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2 Université Joseph Fourier, Grenoble, France

3 Laboratoire Adaptation et Pathogénie des Microorganismes,
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Abstract. The switch-like character of the dynamics of genetic regu-
latory networks has attracted much attention from mathematical biol-
ogists and researchers on hybrid systems alike. We extend our previous
work on a method for the qualitative analysis of hybrid models of genetic
regulatory networks, based on a class of piecewise-affine differential equa-
tion (PADE) models, in two directions. First, we present a refinement
of the method using a discrete or qualitative abstraction that preserves
stronger properties of the dynamics of the PA systems, in particular the
sign patterns of the derivatives of the concentration variables. The dis-
crete transition system resulting from the abstraction is a conservative
approximation of the dynamics of the PA system and can be computed
symbolically. Second, we apply the refined method to a regulatory system
whose functioning is not yet well-understood by biologists, the nutritional
stress response in the bacterium Escherichia coli.

1 Introduction

The functioning and development of living organisms is controlled on the molec-
ular level by networks of genes, proteins, small molecules, and their mutual inter-
actions, so-called genetic regulatory networks. The dynamics of these networks is
hybrid in nature, in the sense that the continuous evolution of the concentration
of proteins and other molecules is punctuated by discrete changes in the activity
of genes coding for the proteins. The switch-like character of the dynamics of
genetic regulatory networks has attracted much attention from mathematical
biologists and researchers on hybrid systems alike (e.g., [1, 2, 3, 4, 5, 6, 7]).

While powerful techniques for the analysis, verification, and control of hy-
brid systems have been developed (see [8, 9] for reviews), the specificities of the
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biological application domain pose a number of challenges [10]. First, most ge-
netic regulatory networks of interest consist of a large number of genes that are
involved in complex, interlocked feedback loops. Second, the data available on
both the structure and the dynamics of the systems is currently essentially qual-
itative in nature, meaning that numerical values for concentration variables and
interaction parameters are generally absent. The above characteristics require
hybrid-system methods and tools to be upscalable and capable of dealing with
qualitative information.

In previous work [4, 11], we have developed a method for the qualitative anal-
ysis of hybrid models of genetic regulatory networks, using a class of piecewise-
affine differential equation (PADE) models that has been well-studied in math-
ematical biology [1, 2] (see also [5]). The method is based on a qualitative ab-
straction of the dynamics of the PA systems and exploits favorable mathematical
properties of the models to symbolically compute reachability properties. The
method has been implemented in the publicly-available computer tool Genetic
Network Analysis (GNA) [12] and validated on a well-understood network, the
initiation of sporulation in B. subtilis [13].

The present paper extends our previous work in two directions. First, we
present a refinement of the method using a qualitative abstraction that pre-
serves stronger properties of the dynamics of the PA systems, in particular the
sign patterns of the derivatives of the concentration variables. This information
is critical for the experimental validation of models of genetic regulatory net-
works, since experimental measurements of the system dynamics by means of
quantitative RT-PCR, reporter genes, and DNA microarrays usually result in
observations of changes in the sign of derivatives. The refinement of the method,
which has required us to deal with non-trivial technical difficulties arising from
discontinuities in the righthand-side of the PADE models, has resulted in a new
prototype version of the computer tool GNA. Second, we have applied the re-
fined method to a biological system whose functioning is not yet well-understood
by biologists, the nutritional stress response in the bacterium E. coli. This has
led to new insights into how the adaptation of cell growth to nutritional stress
emerges from the molecular interactions. Moreover, it has given rise to predic-
tions of the behavior of the system after a nutrient upshift, which are currently
being tested in our laboratory.

In Sections 2 and 3 of the paper, we review PADE models and their math-
ematical properties, with a special emphasis on a partition of the phase space
preserving the sign of the derivatives of the concentration variables. This parti-
tion forms the basis for the definition, in Section 4, of a qualitative abstraction,
transforming the continuous transition system associated with a PADE model
into a discrete transition system. The discrete transition system is a simulation
of the continuous transition system, thus providing a conservative approximation
of the network dynamics. Moreover, the discrete transition system can be easily
computed in a symbolic manner from inequality constraints on the parameters.
In Section 5, we describe the application of the method to the qualitative anal-
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ysis of the nutritional stress response in E. coli. The final section of the paper
discusses the results in the context of related work on hybrid systems.1

2 PADE Models of Genetic Regulatory Networks

The dynamics of genetic regulatory networks can be modeled by a class of
piecewise-affine differential equations (PADE) of the following general form [1, 2]:

ẋ = h(x) = f(x) − g(x)x, (1)

where x = (x1, . . . , xn)′ ∈ Ω is a vector of cellular protein concentrations, f =
(f1, . . . , fn)′, g = diag(g1, . . . , gn), and Ω ⊂ R

n
≥0 is a bounded n-dimensional

phase space box. The rate of change of each protein concentration xi, 1 ≤ i ≤ n,
is thus defined as the difference of the rate of synthesis fi(x) and the rate of
degradation gi(x)xi of the protein.

The function fi : Ω → R≥0 expresses how the rate of synthesis of the protein
encoded by gene i depends on the concentrations x of the proteins in the cell.
More specifically, the function fi is defined as

fi(x) =
∑
l∈Li

κl
i bl

i(x), (2)

where κl
i > 0 is a rate parameter, bl

i : Ω → {0, 1} a piecewise-continuous
regulation function, and Li a possibly empty set of indices of regulation functions.
The function gi expresses the regulation of protein degradation. It is defined
analogously to fi, except that we demand that gi is strictly positive. In addition,
in order to formally distinguish degradation rate parameters from synthesis rate
parameters, we will denote the former by γ instead of κ. Notice that with the
above definitions, h is a piecewise-affine (PA) vector-valued function.

A regulation function bl
i describes the conditions under which the protein

encoded by gene i is synthesized (degraded) at a rate κl
i (γl

i xi). It is defined in
terms of step functions and is the arithmetic equivalent of a Boolean function
expressing the logic of gene regulation [1, 2]. More precisely, the conditions for
synthesis or degradation are expressed using the step functions s+, s−:

s+(xj , θj) =
{

1, if xj > θj ,
0, if xj < θj ,

and s−(xj , θj) = 1 − s+(xj , θj). (3)

where xj is an element of the state vector x and θj a constant denoting a
threshold concentration.

Figure 1(a) gives an example of a simple genetic regulatory network consisting
of two genes, a and b. When a gene (a or b) is expressed, the corresponding
protein (A or B) is synthesized at a specified rate (κa or κb). Proteins A and B

1 A detailed description of the method and the proofs of the propositions can be found
in [14].
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regulate the expression of genes a and b. More specifically, protein B inhibits the
expression of gene a, above a certain threshold concentration θb, while protein
A inhibits the expression of gene b above a threshold concentration θ1

a, and the
expression of its own gene above a second, higher threshold concentration θ2

a.
The degradation of the proteins is not regulated and therefore proportional to
the concentration of the proteins (with degradation parameters γa or γb).

A
B

ba P P

(a)

ẋa = κa s−(xa, θ2
a) s−(xb, θb) − γa xa,

ẋb = κb s−(xa, θ1
a) − γb xb.

(b)

Fig. 1. (a) Example of a genetic regulatory network of two genes (a and b), each

coding for a regulatory protein (A and B). For legend, see Figure 4. (b) PADE model

corresponding to the network in (a)

The use of step functions s±(xj , θj) in (1) gives rise to complications, because
the step functions are discontinuous at xj = θj , and therefore h is discontinuous
on Θ =

⋃
i∈[1..n],li∈[1..pi]

{x ∈ Ω | xi = θli
i }, the union of the threshold hyper-

planes (where the protein encoded by gene i is assumed to have pi threshold
concentrations). In order to deal with this problem, we can follow an approach
widely used in control theory, originally proposed by Filippov [15]. It consists
in extending the differential equation ẋ = h(x), x ∈ Ω \ Θ, to the differential
inclusion

ẋ ∈ K(x), with K(x) = co({ lim
y→x, y �∈Θ

h(y)}), x ∈ Ω, (4)

where co(P ) denotes the smallest closed convex set containing the set P and
{limy→x, y �∈Θ h(y)}, the set of all limit values of h(y), for y �∈ Θ and y → x.
This approach has been applied in the context of genetic regulatory network
modeling by Gouzé and Sari [16].

In practice, K(x) may be difficult to compute because the smallest closed
convex set can be a complex polyhedron in Ω. We therefore employ an alternative
extension of the differential equation:

ẋ ∈ H(x), with H(x) = rect({ lim
y→x, y �∈Θ

h(y)}), x ∈ Ω, (5)

where rect(P ) denotes the smallest closed hyperrectangular set containing the
set P [11, 14]. The advantage of using rect is that we can rewrite H(x) as a
system of differential inclusions ẋi ∈ Hi(x), i ∈ [1..n]. Notice that H(x) is an
overapproximation of K(x), for all x ∈ Ω.

Formally, we define the PA system Σ as the triple (Ω,Θ,H), that is, the
set-valued function H given by (5), defined on the n-dimensional phase space
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Ω, with Θ the union of the threshold hyperplanes. A solution of the PA system
Σ on a time interval I is a solution of the differential inclusion (5) on I, that is,
an absolutely-continuous vector-valued function ξ(t) such that ξ̇(t) ∈ H(ξ(t))
almost everywhere on I. In particular, ξ̇(t) ∈ H(ξ(t)) may not hold, if ξ reaches
or leaves Ω at t.

For all x0 ∈ Ω and τ ∈ R>0∪{∞}, Ξω
Σ(x0, τ) will denote the set of solutions

ξ(t) of the PA system Σ, for the initial condition ξ(0) = x0, and t ∈ [0, τ ], if τ is
finite, or [0,∞), otherwise.2 Since the right-hand side of (5) is upper semicontin-
uous, the existence of at least one solution ξ on some time interval [0, τ ], τ > 0,
with initial condition ξ(0) = x0 is guaranteed for all x0 in Ω [15]. However,
there is, in general, not a unique solution. The set Ξω

Σ =
⋃

x0∈Ω,τ>0 Ξω
Σ(x0, τ)

is the set of all solutions, on a finite or infinite time interval, of the PA system
Σ. We restrict our analysis to the set ΞΣ of the solutions in Ξω

Σ that reach and
leave a threshold hyperplane finitely-many times.

3 Mathematical Analysis of PA Systems

The dynamical properties of the solutions of Σ can be analyzed in the n-
dimensional phase space box Ω = Ω1 × . . .×Ωn, where Ωi = {xi ∈ R | 0 ≤ xi ≤
max i} and max i denotes a maximum concentration of each protein, 1 ≤ i ≤ n.
The (n − 1)-dimensional threshold hyperplanes {x ∈ Ω | xi = θli

i }, 1 ≤ li ≤ pi,
1 ≤ i ≤ n, partition Ω into (hyper)rectangular regions. Since the regulation
of gene expression is identical everywhere in such a region (see below), it corre-
sponds to a regulatory mode. Consequently, the regions are called mode domains.
The set of mode domains of Ω is referred to as M.

max b

xb

max a xa
θ1
a θ2

a

M 1 M 2 M 4 M 5

M 6 M 7 M 8 M 9

M 11 M 12M 13 M 14M 15

M 10

M 3

θb

0

(a)

max b

θb

κb/γb

xb

xa
θ1
a

M 1

Ψ (M 4) Ψ (M 3)

M 3
M 4

M 5
M 2

Ψ (M 5)
0

Ψ (M 1)

κa/γa

θ2
a max a

Ψ (M 11)

M 11

(b)

Fig. 2. (a) Partition by mode domains of the phase space corresponding to the model

of Figure 1(b). (b) Focal sets and dynamics of the mode domains M1 to M5, and M11

2 In the sequel, we say, by abuse of terminology, that ξ is a solution of Σ on [0, τ ],
τ ∈ R>0 ∪ {∞}.
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Figure 2(a) shows the partitioning into mode domains of the two-dimensional
phase space of the example network. We distinguish between mode domains like
M7 and M2, which are located on (intersections of) threshold hyperplanes, and
mode domains like M1, which are not. The former domains are called singular
mode domains and the latter regular mode domains. We denote by Mr and Ms

the sets of regular and singular mode domains, respectively.
We introduce some simple topological concepts. For every hyperrectangular

region, R ⊆ Ω, of dimension k, 0 ≤ k ≤ n, we define the supporting hyperplane of
R, supp(R) ⊆ Ω, as the k-dimensional hyperplane containing R. The boundary
of R in supp(R) is denoted by ∂R. Suppose that M is a singular mode domain,
i.e. M ∈ Ms. Then R(M) is defined as the set of regular mode domains M ′

having M in their boundary, i.e. R(M) = {M ′ ∈ Mr | M ⊆ ∂M ′}.
Using the definition of the differential inclusion (5), it can be easily shown that

in a regular mode domain M , H(x) reduces to the singleton set {µM − νM x},
for all x ∈ M , where µM is a vector of (sums of) synthesis rate constants
and νM a diagonal matrix of (sums of) degradation rate constants. This yields
the classical result that all solutions ξ in M monotonically converge towards
the focal set Ψ(M) = {ψ(M)}, where ψ(M) = (νM )−1µM [1]. We will make
the generic assumption that the focal sets Ψ(M), for all M ∈ Mr, are not
located in the threshold hyperplanes Θ. Figure 2(b) shows the focal sets of four
regular mode domains (M1, M3, M5 and M11). In the case of M11, we see that
Ψ(M11) ⊆ M11, so that ψ(M11) is an asymptotically stable equilibrium point
of Σ.

In a singular mode domain, the right-hand side of the differential inclusion
(5) reduces to H(x) = rect({µM ′ −νM ′

x | M ′ ∈ R(M)}), for all x ∈ M [11, 16].
The focal set associated with the domain now becomes Ψ(M) = supp(M) ∩
rect({ψ(M ′) | M ′ ∈ R(M)}), which is generally not a single point in higher-
dimensional domains [11, 16]. Two different cases can be distinguished. If Ψ(M)
is empty, then every solution passes through M instantaneously [16] and M is
called an instantaneous mode domain. If not, then some (but not necessarily
all) solutions arriving at M will remain in M for some time, sliding along the
threshold planes containing M [16]. M is then called persistent. If Ψ(M) is a
single point, then all solutions in M monotonically converge towards this point.
In the case that Ψ(M) is not a single point, a weaker monotonicity property
holds [11, 16]. Figure 2(b) shows two singular mode domains, M2 and M4. M2

is an instantaneous mode domain (Ψ(M2) = ∅), whereas M4 is a persistent mode
domain in which solutions slide along the threshold plane. In this simple example,
it is intuitively clear how to define the flow in M4, given the dynamics in M3 and
M5. The use of differential inclusions as described above makes it possible to
define the flow in singular domains in a systematic and mathematically proper
way.

The fact that every mode domain is associated with a unique focal set has
provided the basis for the abstraction criterion employed in our previous work
[4, 11]. However, this criterion disregards that the system does not always ex-
hibit the same qualitative dynamics in different parts of a mode domain, in the
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sense that the sign pattern of the derivatives of the solutions ξ may not be
unique. Consider the case of M11 in Figure 2(b): depending on whether ξb(t) is
above, on, or below the focal concentration κb/γb in M11, ξb will be decreasing,
steady, or increasing. As a consequence, if we abstract the domain M11 away in
a single discrete state, we will not be able to unambiguously infer that solutions
entering this domain from M6 are increasing in the xb-dimension. This may lead
to problems when comparing predictions from the model with gene expression
data, for instance the observed variation of the sign of xb. Today’s experimental
techniques, such as quantitative RT-PCR, reporter genes, and DNA microar-
rays, usually produce information on changes in the sign of the derivatives of
the concentration variables.

The mismatch between the abstraction levels of the mathematical analysis
and the experimental data calls for a finer partitioning of the phase space, which
can then provide the basis for a more adequate abstraction criterion. Along these
lines, the regular and singular mode domains distinguished above are reparti-
tioned into (hyper)rectangular regions called flow domains. In the case that a
mode domain M is regular, it is split by the (n − 1)-dimensional hyperplanes
{x ∈ Ω | xi = ψi(M)}, i ∈ [1..n], that intersect with M . Under the same con-
dition, singular mode domains M are repartitioned by the (n − 1)-dimensional
hyperplanes {x ∈ Ω | xi = ψi(M ′)}, M ′ ∈ R(M), i ∈ [1..n]. The resulting set of
flow domains is denoted by D [14]. The partitioning of the phase space into 27
flow domains is illustrated for the example system in Figure 3(a). Every flow do-
main is included in a single mode domain, a relation captured by the surjective
function mode: D → M, defined as mode(D) = M , iff D ⊆ M . Similarly, the
function flow : Ω → D denotes the surjective mapping that associates a point in
the phase space to its flow domain: flow(x) = D, iff x ∈ D.

The repartitioning of mode domain M11 leads to six flow domains (Fig-
ure 3(a)). The finer partition guarantees that in every flow domain of M11, the
derivatives have a unique sign pattern. In D11.2, for instance, the xa-derivative
is negative and the xb-derivative is positive, whereas in D11.3 both deriva-
tives equal zero (in fact, D11.3 coincides with ψ(M11) and is an equilibrium
point of the system). The above property is true more generally. Consider a
point x in a flow domain D ∈ D. We denote by S(x) ∈ 2{−1,0,1}n

the set
of derivative sign vectors of the solutions in D passing through x, that is,
S(x) = {sign(ξ̇(tx)) | ξ ∈ ΞΣ in D, ξ(tx) = x, and ξ̇(tx) ∈ H(ξ(tx))}. Notice
that the definition of S as a set is a direct consequence of the use of differential
inclusions. Theorem 1 states that S(x) is the same for every x ∈ D.

Theorem 1 (Qualitatively-identical dynamics in flow domain). For all
D ∈ D, for all x,x′ ∈ D, S(x) = S(x′).

The theorem suggests that the partition of the phase space introduced in this
section can be used as an abstraction criterion better-adapted to the available
experimental data on gene expression. This idea will be further developed in the
next section.
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max a

max b

θb

κb/γb

xb

xa
θ1
a θ2

a

D12.1
D12.2

D12.3D11.6D11.5

D11.4D11.3

D11.2D11.1

D4.1

D4.2

D14.1 D15.1D13.1

D5.2

D6.2D6.1 D7.1 D8.1 D9.1 D10.1

D3.2D2.2D1.1

D2.1 D3.1 D5.10

(a)

D2.2 D3.2 D4.2 D5.2D1.1

D3.1D2.1 D4.1 D5.1

D11.2

D11.4

D11.6 D12.3

D12.2

D12.1

D7.1

D13.1
D14.1 D15.1

D10.1
D9.1D8.1

D6.2D6.1

D11.1

D11.3

D11.5

(b)

(c) 0 < θ1
a < θ2

a < κa/γa < maxa and 0 < θb < κb/γb < max b

Fig. 3. (a) Partition by flow domains of the phase space of the model in Figure 1(b).

(b) State transition graph of the corresponding qualitative transition system. For the

sake of clarity, self-transitions are represented by dots and transition labels are omitted.

(c) Inequality constraints on parameters for which the graph in (b) is obtained

4 Qualitative Abstraction of the Dynamics of PA
Systems

As a preparatory step, we define a continuous transition system having the
same reachability properties as the original PA system Σ. Consider x ∈ D and
x′ ∈ D′, where D,D′ ∈ D are flow domains. If there exists a solution ξ of Σ
passing through x at time τ ∈ R≥0 and reaching x′ at time τ ′ ∈ R>0 ∪ {∞},
without leaving D ∪ D′ in the time interval [τ, τ ′], then the absolute continuity
of ξ implies that D and D′ are either equal or contiguous. More precisely, one of
the three following cases holds: D = D′, D ∈ ∂D′, or D′ ∈ ∂D. We consequently
distinguish three types of continuous transition that correspond to these three

cases: internal, denoted by x
int−→ x′, dimension increasing, denoted by x

dim+

−→
x′, and dimension decreasing, denoted by x

dim−
−→ x′. The latter two terms refer

to the increase or decrease in dimension when going from D to D′. This leads
to the following definition:

Definition 1 (PA transition system). Σ-TS = (Ω,L,Π,→, |=) is the tran-
sition sytem corresponding to the PA system Σ = (Ω,Θ,H), where:
– Ω is the state space;
– L = {int, dim+, dim−} is a set of labels denoting the three different types

of transitions;
– Π = {Dsign = S | S ∈ 2{−1,0,1}n} is a set of propositions describing the

signs of the derivatives of the concentration variables;
– → is the transition relation describing the continuous evolution of the system,

defined by →⊆ Ω × L × Ω, such that x
l→ x′ iff there exists ξ ∈ ΞΣ and

τ, τ ′, such that 0 ≤ τ < τ ′, ξ(τ) = x, ξ(τ ′) = x′, and
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• if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ flow(x) = flow(x′),
• if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ flow(x′) �= flow(x),
• if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ flow(x) �= flow(x′);

– |= is the satisfaction relation of the propositions in Π, defined by |=⊆ Ω×Π,
such that x |= Dsign = S iff S = S(x).

The satisfaction relation |= thus associates to each point x in the phase
space a qualitative description of the dynamics of the system at x. We define
any sequence of points in Ω, (x0, . . . ,xm), m ≥ 0, as a run of Σ-TS if for all
i ∈ [0..m–1], there exists some l ∈ L such that xi l→ xi+1. It is not difficult
to show that a PA system Σ and its corresponding PA transition system Σ-TS
have equivalent reachability properties (see Theorem 2 in [14]).

The continuous PA transition system has an infinite number of states and
transitions, as a consequence of which conventional tools for model checking
cannot be used to verify properties of the system. However, we can define a
discrete transition system, with a finite number of states and transitions, that
preserves important properties of the qualitative dynamics of the system. In
order to achieve this, we introduce the equivalence relation ∼Ω ⊆ Ω×Ω induced
by the partition D of the phase space: x∼Ωx′ iff flow(x) = flow(x′). From
Theorem 1 it follows that ∼Ω is proposition-preserving [17, 18], in the sense that
for all x,x′ ∈ D and for all π ∈ Π, x |= π iff x′ |= π.

The discrete or qualitative abstraction of a PA transition system Σ-TS, called
qualitative PA transition system, is now defined as the quotient transition system
of Σ-TS, given the equivalence relation ∼Ω [17, 18].

Definition 2 (Qualitative PA transition system). The qualitative PA tran-
sition system corresponding to the PA transition system Σ-TS = (Ω,L,Π,→, |=)
is Σ-QTS = (Ω/∼Ω

, L,Π,→∼Ω
, |=∼Ω

).

Proposition 1 (Qualitative PA transition system). Let Σ-QTS = (Ω/∼Ω
,

L, Π,→∼Ω
, |=∼Ω

) be the qualitative PA transition system corresponding to the
PA transition system Σ-TS = (Ω,L,Π,→, |=). Then

– Ω/∼Ω
= D;

– →∼Ω
⊆ D × L × D, such that D

l→∼Ω
D′ iff ∃ξ ∈ ΞΣ ,∃τ, τ ′, 0 ≤ τ < τ ′

such that ξ(τ) ∈ D, ξ(τ ′) ∈ D′, and
• if l = int, then for all t ∈ [τ, τ ′]: ξ(t) ∈ D = D′,
• if l = dim+, then for all t ∈ (τ, τ ′]: ξ(t) ∈ D′ �= D,
• if l = dim−, then for all t ∈ [τ, τ ′): ξ(t) ∈ D �= D′;

– |=∼Ω
⊆ D × Π, such that D |= Dsign = S iff ∀x ∈ D: S(x) = S.

Notice that the transitions labeled by dim+ or dim− connect two different
flow domains, since in Proposition 1 we require that D �= D′. This corresponds
to a continuous evolution of the system along which it switches from one flow
domain to another. On the contrary, the transitions labeled by int correspond
to the continuous evolution of the system in a single flow domain. Notice also
that qualitative PA transition systems are non-deterministic.
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As for Σ-TS, we define any sequence of flow domains (D0, . . . , Dm), m ≥ 0, as
a run of Σ-QTS iff for all i ∈ [0..m–1], there exists l ∈ L such that Di l→∼Ω

Di+1.
The satisfaction relation |=∼Ω

associates to every run a qualitative description
of the evolution of the derivatives over time. Σ-QTS can be represented by a
directed graph G = (D,→∼Ω

), called the state transition graph. The paths in G
represent the runs of the system. The state transition graph corresponding to the
two-gene example is represented in Figure 3(b), and (D1.1,D2.2,D3.2,D4.2,D4.1)
is an example of a run.

It directly follows from the definitions of quotient transition system and sim-
ulation of transition systems [17, 18] that Σ-QTS is a simulation of Σ-TS. The
converse is not true in general, so that Σ-QTS and Σ-TS are not bisimilar.

Proposition 2. Σ-QTS is a simulation of Σ-TS.

As a consequence of Proposition 2, if there exists a run (x0, . . . ,xm) of Σ-TS,
then there also exists a run (D0, . . . , Dm) of Σ-QTS such that xi ∈ Di, for all
i ∈ [0..m]. In other words, Σ-QTS is a conservative approximation of Σ-TS.

In [14] we introduce a second equivalence relation ∼Γ ⊆ Γ × Γ , defined on
the parameter space Γ of the PA system. Two parameter vectors p and p′

are equivalent, if their corresponding qualitative PA transition systems, and
hence the state transition graphs, are isomorphic. We show that a certain class
of parameter inequality constraints define regions P ⊆ Γ , such that for every
p,p′ ∈ P , it holds that p ∼Γ p′. More precisely, there exists some Q ∈ Γ/∼Γ

,
such that P ⊆ Q (Theorem 3 in [14]). As a consequence, for all vectors of
parameter values satisfying the inequality constraints, the system has the same
qualitative dynamics. Whereas exact numerical values for the parameters are
usually not available, the weaker information required for the formulation of the
inequality constraints can often be obtained from the experimental literature, as
illustrated in Section 5. Figure 3(c) shows the inequality constraints for which
the state transition graph of our example is obtained.

The inequality constraints also play a key role in the actual computation of
the qualitative PA transition system Σ-QTS [14]. The computation of Σ-QTS
is greatly simplified by the fact that the domains D and the focal sets Ψ(M)
are hyperrectangular sets, which allows them to be expressed as product sets,
i.e. D = D1 × . . . × Dn and Ψ(M) = Ψ1(M) × . . . × Ψn(M). As a consequence,
the computation can be carried out for each dimension separately. For instance,
the repartitioning of mode domain D11 into flow domains (Figure 3(a)) is based
on the fact that the xa-component [0, θ1

a) is partitioned into two subsets by the
segment xa = 0, and the xb-component (θb,max b] into three subsets by the
segment xb = κb/γb. The product of these subsets yields the six flow domains
shown in the figure. Notice also that, in order to derive this result, we only need to
know the ordering of θ1

a and κa/γa in the xa-dimension, and that of θb and κb/γb

in the xb-dimension, which are fixed by the inequality constraints in Figure 3(c).
This result is true more generally and also applies to the transition relation →∼Ω

and the satisfaction relation |=∼Ω
. That is, the domains, the transitions, and

the sign pattern of the derivatives can be straightforwardly derived by means
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of symbolic computation using the inequality constraints. The algorithms are
described in more detail in [14] and have been implemented in a new prototype
version of the computer tool GNA [12]. The state transition graph generated
by GNA can be exported to standard model-checking tools like NuSMV and
CADP [22].

5 Application: Qualitative Analysis of Nutritional Stress
Response in E. coli

In case of nutritional stress, an Escherichia coli population abandons exponential
growth and enters a non-growth state called stationary phase. This growth-phase
transition is accompanied by numerous physiological changes in the bacteria,
concerning among other things the morphology and the metabolism of the cell,
as well as gene expression [19]. On the molecular level, the transition from expo-
nential phase to stationary phase is controlled by a complex genetic regulatory
network integrating various environmental signals. The molecular basis of the
adaptation of the growth of E. coli to nutritional stress conditions has been
the focus of extensive studies for decades [20]. However, notwithstanding the
enormous amount of information accumulated on the genes, proteins, and other
molecules known to be involved in the stress adaptation process, there is cur-
rently no global understanding of how the response of the cell emerges from the
network of molecular interactions. Moreover, with some exceptions, numerical
values for the parameters characterizing the interactions and the molecular con-
centrations are absent, which makes it difficult to apply traditional methods for
the dynamical modeling of genetic regulatory networks.

P
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Abstract description of
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CRP
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P1 P2
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from gene fis

Fis

fis

GyrAB
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stable RNAs

cAMP·CRP Cya

rrn
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Fig. 4. Network of key genes, proteins, and regulatory interactions involved in the

nutritional stress network in E. coli. The contents of the boxes labelled ‘Activation’

and ‘Supercoiling’ are detailed in [21]

The above circumstances have motivated the qualitative analysis of the nu-
tritional stress response network in E. coli by means of the method presented
in this paper [21]. On the basis of literature data, we have decided to focus, as
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a first step, on a network of six genes that are believed to play a key role in
the nutritional stress response (Figure 4). The network includes genes involved
in the transduction of the nutritional stress signal (the global regulator crp and
the adenylate cyclase cya), metabolism (the global regulator fis), cellular growth
(the rrn genes coding for stable RNAs), and DNA supercoiling, an important
modulator of gene expression (the topoisomerase topA and the gyrase gyrAB).

Based on this information, a PADE model of seven variables has been con-
structed, one protein concentration variable for each of the six genes and one
input variable (usignal) representing the presence or absence of a nutritional
stress signal [21]. As an illustration, the piecewise-affine differential equation
and the parameter inequality constraints for the state variable xtopA are given
below.

ẋtopA = κ1
topA + κ2

topA s+(xgyrAB , θ3
gyrAB ) s−(xtopA, θ1

topA) s+(xfis , θ
4
fis) − γtopA xtopA

0 < κ1
topA/γtopA < θ1

topA < θ2
topA < θ3

topA < (κ1
topA + κ2

topA)/γtopA < max topA

The above equation and inequalities state that the basal expression of topA is
low (κ1

topA/γtopA < θ1
topA), whereas in the presence of a high concentration of Fis

(s+(xfis , θ
4
fis) = 1), and of a low level of DNA supercoiling (s+(xgyrAB , θ3

gyrAB )
s−(xtopA, θ1

topA) = 1), the concentration of TopA increases, converging towards
a high value ((κ1

topA + κ2
topA)/γtopA > θ3

topA).
Using the computer tool GNA, we have performed reachability analyses on

the qualitative PA transition system associated with the PADE model. The
simulation of the entry into stationary phase has given rise to a state transition
graph of 712 states, computed in 5.0 s on a PC (800 MHz, 256 Mb). Figure 5
represents the temporal evolution of two of the protein concentrations in a run.
The evolutions are consistent with the observations [21]. The coupling of GNA
with model-checking tools [22] has allowed a more systematic verification of
observed dynamical properties.
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Fig. 5. Temporal evolution of Fis and CRP concentrations in the run (D1, . . . , D31).

Arrows indicate the sign of the derivative for persistent states

The application of the method has led to new insights into how the nutritional
stress signal results in the slowing-down of bacterial growth characteristic for
the stationary phase [21]. In summary, the analysis has brought to the fore
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the role of the mutual inhibition of Fis and CRP, which in the presence of a
nutritional stress signal results in the inhibition of fis and in the activation of
crp. This causes a decrease of the expression of the rrn genes, which code for
stable RNAs and are a reliable indicator of cellular growth. In addition to this
increased understanding of the transition from exponential to stationary phase,
the model has yielded predictions on the occurrence of oscillations in some of
the protein concentrations after a nutrient upshift, predictions that are currently
being tested in our laboratory. The scope of our study is now being enlarged to
more complex nutritional stress response networks.

The analysis of the nutritional stress response in E. coli has confirmed the
utility of the refined qualitative abstraction presented in this paper. Reparti-
tioning the mode domains, such that the sign patterns of the derivatives of the
concentration variables in the states of the qualitative PA transition system are
unique, avoids verification of dynamical properties to be over-conservative. Con-
sider Figure 6, which compares two-dimensional projections of a phase-space
slice of the stress response model. Depending on whether mode domains or
flow domains are used as the abstraction criterion, the state transition graph
will be different (compare (d) and (e) of Figure 6). Whereas the CTL formula
EF (ẋcrp > 0 ∧EF (ẋcrp < 0)) holds for the graph in (d), this is not true in (e),
thus revealing that the coarse-grained abstraction may cause models to escape
refutation by available experimental data.
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Fig. 6. (a) Two-dimensional projection of a slice of the phase space of the E. coli

stress response model for the variables xcrp and xcya . (b)-(c) Partitioning into (b) mode

domains and (c) flow domains of the projection. (d)-(e) Excerpts of state transition

graph resulting from the qualitative abstraction based on (d) mode domains and (e)

flow domains

The application of the fine-grained qualitative abstraction to the nutritional
stress response system has also revealed that it is notmuchmore computationally-
expensive than the coarse-grained abstraction used in our previous work. In fact,
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when analyzing the transition from exponential to stationary phase, the refined
abstraction generates 712 persistent states, whereas the original qualitative PA
transition system has 39 persistent states. However, when defining a single ini-
tial state, corresponding to the biologically most plausible flow domain after
repartitioning of the mode domain, the refined abstraction yields only 40 per-
sistent states. A more systematic study of a PADE model with nine state and
two input variables, describing the initiation of sporulation in B. subtilis for the
wild-type and a dozen of mutant strains, confirms this result. On average, the
refined abstraction generates only twice as much states, under the condition that
the reachability analysis is carried out from a single flow domain.

6 Discussion and Conclusions

We have presented a method for the qualitative analysis and verification of hy-
brid models of genetic regulatory networks. The method is based on a class
of piecewise-affine differential equation models that has been well-studied in
mathematical biology. By defining a qualitative abstraction preserving the sign
pattern of the derivatives of concentration variables, the continuous PA tran-
sition system associated with a PADE model is transformed into a discrete or
qualitative PA transition system whose properties can be analyzed by means of
classical model-checking tools. The qualitative PA transition is a simulation of
the underlying continuous PA transition system and can be easily computed in
a symbolic manner by exploiting inequality constraints on the parameters.

The results of this paper extend our previous work [4, 11] in two directions.
In the first place, we have defined a refined partitioning of the phase space
which underlies a qualitative abstraction preserving stronger properties of the
qualitative dynamics of the system, i.e. the derivative sign pattern. The result-
ing qualitative PA transition system is better adapted to the abstraction level
of the experimental data, in the sense that it avoids verification of dynamical
properties to be over-conservative. In the second place, we have applied the im-
plementation of the method to the analysis of a system whose functioning is
not well-understood by biologists today, the nutritional stress response in the
bacterium E. coli. The application has led to biologically interesting results and
has confirmed the importance of the refined qualitative abstraction.

The hybrid character of the dynamics of genetic regulatory networks has
stimulated the interest in the application of hybrid-systems methods and tools
over the past few years [3, 4, 5, 6, 7]. Our approach differs from this related work
on several counts. Whereas we use piecewise-affine deterministic models, other
groups have employed multi-affine deterministic models [3, 7] or stochastic mod-
els [6]. Without denying the interest of the latter approaches, we note that the
class of models underlying our approach allows the qualitative analysis of high-
dimensional systems, and is therefore well-adapted to state-of-the-art measure-
ment techniques in molecular biology. The PADE models (1) in this paper have
been well-studied in mathematical biology [1, 2], and have also formed the basis
for other work in the field of hybrid systems [5]. However, the latter approach



148 G. Batt et al.

does not take into account the dynamics of the system on threshold hyper-
planes, where equilibrium points and other phenomena of interest may occur
[16]. In addition, we use a tailored method for the computation of a qualitative
PA transition system, instead of the generic quantifier elimination method used
in [5]. This allows us to fully exploit the favorable mathematical properties of
the PADE models (1), and thus promote the upscalability of the method to large
and complex networks (Section 5), even when using a fine-grained partitioning
of the phase space.

From a more general perspective, our approach can be seen as an applica-
tion of the notion of discrete abstraction, introduced to study the dynamics of
systems with an infinite number of states [17, 18]. Much work has focused on
the identification of classes of continuous and discrete dynamical systems for
which bisimulation relations with finite transition systems are guaranteed to ex-
ist. The results of this paper can be seen as showing that the weaker simulation
relation may also be of considerable practical interest, especially for classes of
systems for which the existence of a finite bisimulation cannot be guaranteed.
Discrete abstraction criteria similar to the one used in this paper, based on the
sign of the (higher) derivatives of continuous variables, have also been proposed
by other authors in the fields of hybrids systems [23] and qualitative reasoning
[24]. In comparison with these approaches, our work deals with a less general
class of models. However, this allows the development and implementation of
efficient, tailored algorithms for the practical computation of the qualitative dy-
namics of the system, even on (intersections of) threshold hyperplanes, where
discontinuities may occur.

The possibility to use efficient algorithms for the computation of the quali-
tative PA transition system rests, to a large extent, on the approximation of the
set K(x) in (4) by the set H(x) in (5). Because the latter set is hyperrectangu-
lar, the computation of domains, transitions, and sign patterns can be carried
out seperately in every dimension, using the ordering of parameter values fixed
by inequality constraints. Because H(x) is an overapproximation of K(x), the
state transition graph may contain sequences of states that would not occur in
the graph obtained by using K(x). As a consequence, a PADE model may fail
to be rejected by an observed time-series of measurements of the concentration
variables. However, due to the fact that the approximation of H(x) by K(x)
is conservative, a PADE model will never be falsely rejected. An obvious direc-
tion for further research would be to see whether finer approximations of H(x)
can be found that still allow tailored symbolic algorithms to be used that do
not compromise the upscalability of the method to large and complex genetic
regulatory networks.
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