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Abstract. The study of genetic regulatory networks has received a ma-
jor impetus from the recent development of experimental techniques al-
lowing the measurement of patterns of gene expression in a massively
parallel way. This experimental progress calls for the development of
appropriate computer tools for the modeling and simulation of gene reg-
ulation processes. We present a method for the hybrid modeling and
simulation of genetic regulatory networks, based on a class of piecewise-
linear (PL) differential equations that has been well-studied in mathe-
matical biology. Distinguishing characteristics of the method are that it
makes qualitative predictions of the behavior of regulatory systems and
that it deals with discontinuities in the right-hand side of the differential
equations. The simulation method has been implemented in Java in the
computer tool Genetic Network Analyzer (GNA). The method and the
tool have been used to analyze several networks of biological interest, in-
cluding the network underlying the initiation of sporulation in Bacillus
subtilis.

1 Introduction

The study of genetic regulatory networks has received a major impetus from
the recent development of experimental techniques allowing the measurement
of patterns of gene expression in a massively parallel way. This experimental
progress calls for the development of appropriate computer tools for the modeling



and simulation of gene regulation processes. A variety of approaches for the
modeling and simulation of genetic regulatory networks has been proposed in
the past three decades [4,17,21,25].

A particularly interesting approach towards the computational analysis of
genetic regulatory networks, well-adapted to state-of-the-art measurement tech-
niques in genomics, is based on a class of piecewise-linear (PL) differential equa-
tions originally proposed by Glass and Kauffman [10,14]. The state variables in
the PL models correspond to the concentrations of proteins encoded by genes
in the network, while the differential equations represent the interactions arising
from the regulatory influence of some proteins on the synthesis and degradation
of others. The regulatory interactions are modeled by means of step functions,
which gives rise to the piecewise-linear structure of the system. More precisely,
the use of step functions divides the phase space into hyperrectangular regions, in
each of which the system evolves according to a set of linear, uncoupled differen-
tial equations. On the boundaries between these regions, the system description
switches from one set of linear, uncoupled equations to another.

The dual, continuous and discrete, nature of the PL models of genetic regula-
tory networks has attracted the interest of researchers in hybrid systems [1,13].
In this paper, we present a modeling and simulation method [7-9] that extends
the above work in two respects. First, the PL models being used are qualitative,
in the sense that numerical values for parameters and initial conditions, which
are usually not available, need not be specified. Instead, the models are supple-
mented by qualitative constraints in the form of algebraic inequalities. Second,
the method is able to deal with discontinuities in the right-hand side of the dif-
ferential equations, resulting from the use of step functions. The discontinuities
give rise to non-trivial mathematical problems that are solved through the use
of a Filippov generalization of the PL models [12,15]. On a formal level, the
PL models are related to a class of asynchronous logical models proposed by
Thomas and colleagues [28].

The qualitative simulation method is supported by the publicly-available
computer tool GNA (Genetic Network Analyzer) [6], which has been used to an-
alyze several genetic regulatory networks of biological interest. We will illustrate
the use of GNA by summarizing the results obtained in the modeling and simu-
lation of the large and complex network underlying the initiation of sporulation
in Bacillus subtilis [5].

2 PL Models of Genetic Regulatory Networks

The dynamics of genetic regulatory networks can be modeled by a class of
piecewise-linear differential equations of the following general form [14, 22, 26]:

&= f(z)-—g(x)z, >0, (1)

where ¢ = (z1,...,z,)" is a vector of cellular protein concentrations, and f =
(fi,---5 fn)', g = diag(g1,-..,gn). The rate of change of each concentration z;,
1 <4 < n, is defined as the difference of the rate of synthesis f;(x) and the rate
of degradation g;(x) z; of the protein.
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The function f; : RS, — R>¢ is defined as

fi@) = Y rabu(z), (2)

leL

where k; > 0 is a rate parameter, by : RZ, — {0,1} a regulation function,
and L a possibly empty set of indices of regulation functions. A regulation func-
tion b; is the arithmetic equivalent of a Boolean function expressing the logic
of gene regulation [22,28]. The function g; expresses the regulation of protein
degradation. It is defined analogously to f;, except that we demand that g;(x) is
strictly positive. In addition, in order to formally distinguish degradation rates
from synthesis rates, we will denote the former by 7 instead of k.

Fig. 1 gives an example of a simple genetic regulatory network. Genes a
and b, transcribed from separate promoters, encode proteins A and B, each of
which controls the expression of both genes. More specifically, proteins A and
B repress gene a as well as gene b at different concentrations. Repression of the
genes is achieved by binding of the proteins to regulatory sites overlapping with
the promoters.

The network in Fig. 1 can be described by means of the following pair of
state equations:

o = Ko 5™ (€a,02) 5™ (23,6;) = Ya Ta 3)
&y = ko5 (2a,05) 5 (25,65) — 1 o (4)

Gene a is expressed at a rate k, > 0, if the concentration of protein A is below
its threshold 62 and the concentration of protein B below its threshold 6}, that
is, if 7 (z4,0%) s~ (25,61) = 1. Recall that s~ (z,6) is a step function evaluating
to 1, if x < @, and to 0, if z > 6. Protein A is spontaneously degraded at a
rate proportional to its own concentration (v, > 0 is a rate constant). The state
equation of gene b is interpreted analogously.
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Fig. 1. Example of a genetic regulatory network of two genes (a and b), each coding
for a regulatory protein (A and B).

3 Properties of PL Models

The dynamical properties of PL models of the form (1) can be analyzed in the
n-dimensional phase space box 2 = 2y x ... x (2,, where (2; = {z; € R>¢ |



0 < z; < maz;}, 1 < i < n, and maz; is a parameter denoting a maximum
concentration for the protein.

In general, a protein encoded by a gene is involved in different interac-
tions at different threshold concentrations, which after ordering are denoted by
6},...,6% . The n — 1-dimensional hyperplanes z; = 8, 1 < k; < p;, divide 2
into regions that are called domains. More precisely, a domain D C (2 is defined
by D = D; x ... x D,, where every D;, 1 < i < n, is defined by one of the
equations below:

D; :{$i|0§$i <0%},
D; ={z; | z; = 6;},
D; :{.'L'i | 011 < Z; <0?},

(5)

D; ={z; | 67" < z; < maz;}.

If for a domain D, there are some 4,5, 1 < i < n, 1 < j < p;, such that
D; = {z; | z; = 6]}, then D is called a switching domain. The order of a
switching domain is a number between 1 and n, equal to the number of switching
variables. A domain that is not a switching domain is called a regulatory domain.
In Fig. 2(a) the two-dimensional phase space box {2 for the example network
is shown. As proteins A and B each have two thresholds, the phase space box
is partitioned into 9 regulatory and 16 switching domains. For example, D! =
{(zq,2p) € R? | 0 <y < 6}, 0 <z <6i}is aregulatory domain, whereas
D* = {(zq,75) € R? | 0 <z, <0}, 2, = 62} is a (first-order) switching domain.
When evaluating the step function expressions in (1) in a regulatory domain,
fi and g; reduce to sums of rate constants. More precisely, in a regulatory domain
D, f; reduces to some uP € M; = {fi(z) | 0 < £ < maz}, and g; to some
vP € Ni = {gi(x) | 0 < ¢ < maz}. M; and N; collect the synthesis and
degradation rates of the protein in different domains of (2. Inside D, the state
equations thus simplify to linear, uncoupled differential equations
i=p" -vle, (6)

where u? = (uP,...,uP)" and vP = diag(v?,...,vD). For every regulatory
domain D, we define the function ¢;(D) = pP /vP. Analysis of (6) shows that
all solution trajectories in D monotonically tend towards a target equilibrium,
a stable equilibrium given by = = ¢(D), with ¢ = (é1,...,0,)" [14,22,26].
The target equilibrium level uP/vP of the protein concentration z; gives an
indication of the strength of gene expression in D. Call #(D) = {¢(D)} the
target equilibrium set of D. If #(D) N D # {}, then all trajectories will remain
in D. If not, they will leave D at some point.

In the example, we have M, = {0,k,}, Ny = {7,} for protein A, and M =
{0,kp}, Ny = {7} for protein B. In regulatory domain D! in Fig. 2(a), the
trajectories tend towards the target equilibrium ¢(D') = (k4 /7a, k6/7s). Since
&(D1) N D1 = {}, the trajectories starting in D will leave this domain at some



point. Different regulatory domains generally have different target equilibria. For
instance, in regulatory domain D3, the target equilibrium is given by (0, ks/7s)-

The global solution of (1) could be obtained by piecing together the local
solutions in regulatory domains, in such a way as to guarantee continuity of
the global solution across the threshold hyperplanes [10,26]. This works fine
as long as trajectories arriving at a threshold hyperplane can be continued in
another regulatory domain, e.g., trajectories arriving at the switching domain
D? from the regulatory domain D' (Fig. 2(a)). However, when the trajectories
on both sides of a threshold hyperplane evolve towards this plane, as in the case
of trajectories arriving from D?® and D® at D*, mathematical perplexities arise.
There is no indication on how the local solutions in D? and D5 can be continued.
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Fig. 2. (a) Phase space box for the example network in Fig. 1. ¢(D"), ¢(D?), ¢(D")
denote the target equilibria of the regulatory domains D!, D, D5. In addition, the
figure shows the discontinuities at the switching domains D* and D*. (b)-(c) Determi-
nation of the target equilibrium sets #(D?) and &(D*).

The troubles at the threshold hyperplanes are caused by discontinuities in
the right-hand side of (1), due to the use of step functions. In order to deal with
these discontinuities, we will use a method originally proposed by Filippov [12].



This method, recently applied by Gouzé and Sari [15] to PL systems of the form
(1), consists of extending a system of differential equations with discontinuous
right-hand sides into a system of differential inclusions. Using this generalization,
it can be shown that, in the case of a switching domain D, the trajectories either
traverse D instantaneously or tend towards a target equilibrium set (D). As
a summary of the analysis in [7,8], consider a switching domain D of order &,
contained in the n — k-dimensional hyperplane C. Moreover, let R(D) be the set
of regulatory domains that have D in their boundary. Then

#(D) =Cn{eo({p(D) | D' € R(D)}). (7)

That is, #(D) is the smallest closed convex set of the target equilibria of regu-
latory domains D' having D in their boundary, intersected with the hyperplane
containing D. If #(D) = {}, the solutions arriving at D will cross the switching
domain instantaneously. On the other hand, if #(D) # {}, then there exist solu-
tions remaining in D for some interval of time, sliding along D towards a target
equilibrium in &(D). If (D) N D # {}, then some trajectories may never leave
D. If not, they will leave D at some point.

Consider the examples in Fig. 2(b)-(c). The target equilibrium set ®(D?)
of the switching domain D? is defined, following (7), by the intersection of
co({¢p(D'), p(D?)}) and the threshold hyperplane z, = ;. The smallest closed
convex set consists of the linear segment connecting the points (ka/%Ya, £6/7)
and (0, K5/7s). Because co({¢p(D'), ¢(D?)}) and the threshold plane z, = 6} do
not intersect in the figure, $(D?) = {} and all solutions instantaneously cross
D?. This is different in the case of D*. Here, the target equilibrium set #(D*) is
given by the intersection of ¢o({@(D?), ¢(D%)}), the linear segment connecting
the points (0, ks/7) and (0,0), and the threshold hyperplane z; = 2. Conse-
quently, #(D*) equals {(0,6?)}, and all solutions arriving at D* from D? or D3
slide along the threshold plane towards (0,63 ). Because #(D*) is included in D*,
(0,62) is an equilibrium of the system. Closer analysis reveals that it is stable.

4 Qualitative Constraints on Parameters

Most of the time, precise numerical values for the threshold and rate parameters
in (1) are not available. Instead, we will specify qualitative constraints on the
parameter values, as explained in [8]. These constraints, having the form of
algebraic inequalities, can usually be inferred from biological data.

The first type of constraints is obtained by ordering the p; threshold concen-
trations of the protein encoded by gene i, yielding the threshold inequalities:

0<6; <...<0% < maw;, (8)

The threshold inequalities determine the partitioning of {2 into regulatory and
switching domains.

In the case of protein A, there are two threshold concentrations: 6} and
2. Assuming the first to be lower than the second, we obtain the threshold



inequalities 0 < 6} < 62 < maz,. The ordering of the thresholds of protein B
give rise to 0 < 6} < 67 < mawzy,.

Second, the possible target equilibrium levels u? / VZ-D of z; in different regula-
tory domains D C (2 can be ordered with respect to the threshold concentrations.
The resulting equilibrium inequalities define the strength of gene expression in
the domain in a qualitative way, on the scale of ordered threshold concentrations.
More precisely, for every p; € M;, v; € N;, and p;, v; # 0, we specify one of the
following pairs of inequalities:

0 < pi/vi <0j,
921 < [I/,'/I/z' <9§,

07 < pi/v; < maz;. (9)

The equilibrium inequalities constrain the relative position of D and its target
equilibrium set &(D).

The equilibrium inequalities for z, in the example are 62 < K,/7, < maz,. In
the absence of protein B, while protein A has not yet reached its highest level,
gene a is expressed at a rate k,. The corresponding target equilibrium value
Ka/%a Of £, must be above the second threshold Hﬁ, otherwise the concentration
of the protein would not be able to reach or maintain a level at which the
observed negative autoregulation of gene a occurs. In a similar way, we set 67 <
Kp/vp < mazy for xyp.

A quantitative PL model of a genetic regulatory network consists of state
equations (1) and numerical parameter values 0, &, . In a qualitative PL model,
on the other hand, the state equations are supplemented by threshold and equi-
librium inequalities. Every quantitative PL model can be uniquely abstracted
into a qualitative PL model.

5 Qualitative Simulation of Genetic Regulatory Networks

Let @, defined on some time-interval [0, 7], be a solution of a quantitative PL
model describing a genetic regulatory network. Furthermore, at some time-point
t, 0 <t < 7, x(t) € D. A qualitative description of x at ¢ consists of the
domain D, supplemented by the relative position of D and #(D). We call this
the qualitative state of the system. On [0, 7] the solution traverses a sequence
of domains D°,..., D™ in (2. Whenever x enters a new domain, the system
makes a transition to a new qualitative state. The sequence of qualitative states
corresponding to the sequence of domains is called the qualitative behavior of
the system on the time-interval. Every solution of a quantitative PL model can
be uniquely abstracted into a qualitative behavior [8].

Given a qualitative PL model and initial conditions in a domain D°, the
aim of gqualitative simulation is to determine the possible qualitative behaviors
of the system [20]. More precisely, denoting by X the set of solutions x(t) of



all quantitative PL models corresponding to the qualitative model, such that
z(0) = x¢ € D°, the aim of qualitative simulation is to find the set of qualitative
behaviors abstracting from some x € X.

In [8] a simulation algorithm is described that generates a set of qualita-
tive behaviors by recursively determining qualitative states and transitions from
qualitative states, starting at the qualitative state associated with the initial do-
main D°. Instead of performing extensive numerical calculations, the simulator
reaches its goal through symbolic computation, by exploiting the parameter in-
equalities (8)-(9). The simulation results in a transition graph, a directed graph
of qualitative states and transitions between qualitative states. The transition
graph contains qualitative equilibrium states or qualitative cycles. These may
correspond to equilibrium points or limit cycles reached by solutions in X, and
hence indicate functional modes of the regulatory system.
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Fig. 3. (a) Transition graph resulting from a simulation of the example system starting
in the domain D'. Qualitative states associated with regulatory domains and switch-
ing domains are indicated by unfilled and filled dots, respectively. Qualitative states
associated with domains containing an equilibrium point are circled [8]. (b) Detailed
description of the qualitative behavior (QS", @S2, QS3, Q8*).

Fig. 3(a) shows the transition graph for a qualitative simulation of the ex-
ample system, starting in the regulatory domain D', where both z, and xz; lie
below their first threshold. As can be seen, the simulation results in five qual-
itative behaviors leading to different qualitative equilibrium states. In QS*®,
associated with the switching domain D'¢ in Fig. 2(a), protein A is present at a
high concentration (z, = 62), whereas protein B is present at a low concentra-
tion (0 < z; < 6}). In QS*, associated with D*, protein A is present at a low
concentration (0 < z, < 63) and protein B at a high concentration (z; = 67). In
QS7, associated with D7, protein A and protein B are present at intermediate
concentrations (z, = 6% and z, = 6}). The qualitative equilibrium states QS*
and Q8% correspond to stable equilibria of the system, whereas QS” corresponds
to an unstable equilibrium.



A sequence of qualitative states in the transition graph represents a predicted
qualitative behavior of the system. Fig. 3(b) gives a detailed description of one
qualitative behavior, (QS", QS?, Q5*, QS*). It shows for each qualitative state
the corresponding domain, by indicating the (threshold) bounds for the concen-
tration variables. In QS', for instance, z, lies between 0 and 6!, while z; lies
between 0 and 6}. In the (instantaneous) state QS?, z;, equals 6.

It has been demonstrated that the transition graph generated by the simu-
lation algorithm covers all qualitative behaviors abstracting from some x € X
[8]. That is, whatever the exact numerical values for the parameters be, if these
values are consistent with the threshold and equilibrium inequalities specified in
the qualitative PL model, the qualitative shape of the solution is described by a
sequence of states in the transition graph.

The qualitative simulation method has been implemented in Java 1.3 in the
program Genetic Network Analyzer (GNA) [6]. GNA is available for non-profit
academic research purposes at http://www-helix.inrialpes.fr/gna. The core
of the system is formed by the simulator, which generates a transition graph
from a qualitative PL model and initial conditions. The input of the simulator
is obtained by reading and parsing text files specified by the user. A graphical
user interface (GUI), named VisualGNA, assists the user in specifying the model
of a genetic regulatory network as well as in interpreting the simulation results.
Fig. 4 shows a screen capture of GNA for the example network.
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Fig. 4. Modeling and simulation of the genetic regulatory network of Fig. 1 by means
of GNA. The window on the left shows the proteins and interactions of the sporulation
network, the window in the middle part of the state transition graph resulting from
simulation of the network under initial conditions inducing sporulation, and the window
on the right the temporal sequence of qualitative states in one selected path in the state
transition graph.
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Fig. 5. Key genes, proteins, and regulatory interactions making up the network in-
volved in B. subtilis sporulation. In order to improve the legibility of the figure, the
control of transcription by the sigma factors o and o has been represented implicitly,
by annotating the promoter with the corresponding sigma factor.

6 Application: Initiation of Sporulation in Bacillus subtilis

Under conditions of nutrient deprivation, the Gram positive soil bacterium Bacil-
lus subtilis can abandon vegetative growth and form a dormant, environmentally-
resistant spore instead [3, 16,19, 27]. During vegetative growth, the cell divides
symmetrically and generates two identical cells. During sporulation, on the other
hand, cell division is asymmetric and results in two different cell types: the
smaller cell (the forespore) develops into the spore, whereas the larger cell (the
mother cell) helps to deposit a resistant coat around the spore and then dis-
integrates. The decision to abandon vegetative growth and initiate sporulation
involves a radical change in the genetic program, the pattern of gene expression,
of the cell. The switch of genetic programme is controlled by a complex genetic
regulatory network integrating various environmental, cell-cycle, and metabolic
signals. Due to the ease of genetic manipulation of B. subtilis, it has been pos-
sible to identify and characterize a large number of the genes, proteins, and
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interactions making up this network. Currently, more than 125 genes are known
to be involved [11].

The qualitative simulation method based on PL models will be illustrated by
analyzing the genetic regulatory network underlying the initiation of sporulation
in B. subtilis. A graphical representation of the regulatory network controlling
the initiation of sporulation is shown in Fig. 5, displaying key genes and their
promoters, proteins encoded by the genes, and the regulatory action of the pro-
teins. References to the experimental literature having been used to compile the
network are given in [5].
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Fig. 6. Fragment of the state transition graph produced for vegetative growth condi-
tions, when the sporulation signal is present.

The network is centered around a phosphorelay, which integrates a variety of
environmental, cell-cycle, and metabolic signals. Under conditions appropriate
for sporulation, the phosphorelay transfers a phosphate to the SpoOA regula-
tor, a process modulated by kinases and phosphatases. The phosphorelay has
been simplified in this paper by ignoring intermediate steps in the transfer of
phosphate to SpoOA. However, this simplification does not affect the essential
function of the phosphorelay: modulating the phosphate flux as a function of the
competing action of kinases and phosphatases (here KinA and SpoOE). Under
conditions conducive to sporulation, such as nutrient deprivation or high popula-
tion density, the concentration of phosphorylated Spo0A (Spo0A~P) may reach
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a threshold value above which it activates various genes that commit the bac-
terium to sporulation. The choice between vegetative growth and sporulation
in response to adverse environmental conditions is the outcome of competing
positive and negative feedback loops, controlling the accumulation of SpoOA~P
[16,19].

Notwithstanding the enormous amount of work devoted to the elucidation of
the network of interactions underlying the sporulation process, very little quan-
titative data on kinetic parameters and molecular concentrations are available.
The aim of the example is to show that GNA is able to reproduce the observed
qualitative behavior of wild-type and mutant bacteria from a model that is a
synthesis of available data in the literature. To this end, the graphical repre-
sentation of the network has been translated into a PL model supplemented by
qualitative constraints on the parameters. The resulting model consists of nine
state variables and two input variables. The 49 parameters are constrained by
58 parameter inequalities, the choice of which is largely determined by biological
data [5].

GNA has been used to simulate the response of a wild-type B. subtilis cell
to nutrient depletion and high population density. Starting from initial condi-
tions representing vegetative growth, the system is perturbed by a sporulation
signal that causes KinA to autophosphorylate. Simulation of the network takes
less than a few seconds to complete on a PC (500 MHz, 128 MB of RAM), and
gives rise to a transition graph of 465 qualitative states. Many of these states
are associated with switching domains that the system traverses instantaneously.
Since the biological relevance of the latter states is limited, they can be elimi-
nated from the transition graph. This leads to a reduced transition graph with
82 qualitative states, part of which is shown in Fig. 6.

The transition graph faithfully represents the two possible responses to nu-
trient depletion that are observed for B. subtilis: either the bacterium continues
vegetative growth or it enters sporulation. A typical qualitative behavior for
sporulation as well as for vegetative growth are shown in Fig. 7. The initiation
of sporulation is determined by positive feedback loops acting through SpoOA
and KinA, and a negative feedback loop involving SpoOE. When the rate of
accumulation of the kinase KinA outpaces the rate of accumulation of the phos-
phatase SpoOE, we observe transient expression of sigF, i.e. a spoT phenotype
(Fig. 7(a)). If the kinetics of these processes are inversed, sigF' is never activated
and we observe a spo~ phenotype (Fig. 7(b)). Deletion or overexpression of genes
in the network of Fig. 5 may disable a feedback circuit, leading to specific changes
in the observed sporulation phenotype. The results of the simulation of a dozen
examples of sporulation mutants are discussed in [5].

7 Discussion

We have presented a method for the modeling and simulation of genetic regula-
tory networks. The method is based on a class of piecewise-linear (PL) differential
equations that has been well-studied in mathematical biology. The PL models
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constitute a hybrid description of genetic regulatory networks, in the sense that
they distinguish modes in which the system evolves continuously and discrete
transitions between these modes. In the terminology of Mosterman and Biswas
[23], the transitions are of one of two types. For example, pinnacle mode transi-
tions occur when, upon reaching a switching domain D, the domain is traversed
instantaneously (#(D) = {}). On the other hand, continuous mode transitions
occur when the system remains in D for an interval of time (&(D) # {}).

Hybrid-system formalizations of genetic regulatory networks have been pro-
posed by Alur et al. [1] and Ghosh and Tomlin [13]. The method presented in this
paper extends these approaches in two respects. First, it provides a qualitative
analysis of the behavior of the networks, generalized to higher-order systems.
Second, it deals with discontinuities in the right-hand side of the differential
equations in a mathematically proper and practically useful manner, by em-
ploying a Filippov generalization of the PL models. In order to handle discon-
tinuities entailed by mode transitions, hybrid-system simulation methods based
on Filippov solutions have been developed [24]. These methods are suitable for
(semi-)quantitative, but not for qualitative PL models. In comparison with clas-
sical qualitative simulators like QSIM [20], the method presented here has been
adapted to a particular class of systems, exploiting the favorable mathemati-
cal properties of (1). This allows it to scale up to large and complex genetic
regulatory networks.

The PL models being used in this paper describe a genetic regulatory network
as a set of genes encoding proteins that control the synthesis and degradation of
other proteins. The models abstract from the precise molecular mechanisms in-
volved, by expressing the underlying regulatory logic in terms of step functions.
It would be possible to generalize the modeling framework so as to give a de-
tailed description of the molecular mechanisms, for example the phosphorylation
reactions in the phosphorelay in the sporulation network (Fig. 5). Mathematical
biology offers the building blocks for achieving such a generalization, through
well-established modeling approaches like mass-action and power-law kinetics
[18,29] (see [2] for an illustration in a hybrid-system context). However, this
generalization would introduce nonlinearities that make it difficult to treat the
dynamics of higher-order systems in a qualitative way. Moreover, due to differ-
ences in time-scale, it is often more appropriate to abstract away the dynamics
of the molecular mechanisms by means of quasi-equilibrium assumptions, giving
rise to step function approximations. This latter approach has been followed in
the case of the phosphorelay (see [5] for details).

The simulation method has been implemented in Java in the computer tool
Genetic Network Analyzer (GNA). The implementation has been used to study
the network underlying the initiation of sporulation in B. subtilis. GNA is able
to reproduce the observed qualitative behavior of wild-type and mutant bacte-
ria from a model that is a synthesis of available data in the literature. Because
sporulation in B. subtilis is one of the best-studied prokaryotic model systems,
it is an excellent case study for the validation of the simulation tool. However,
the real interest of tools like GNA comes from the simulation of genetic reg-
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ulatory networks that are less understood and the use of the predictions thus
obtained for guiding further experimental work. We are currently applying GNA
in the context of studies of the global regulation of transcription in E. coli and
Synechocystis.
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