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Abstract. The analysis of genetic regulatory networks will much benefit from the
recent upscaling to the genomic level of experimental methods in molecular biology.
In addition to high-throughput experimental methods, mathematical and bioinfor-
matics approaches are indispensable for the analysis of genetic regulatory networks.
Given the size and complexity of most networks of biological interest, an intuitive
comprehension of their behavior is often difficult, if not impossible to obtain. A
variety of methods for the modeling and simulation of genetic regulatory networks
have been proposed in the literature. In this tutorial, the two principal approaches
that have been used will be reviewed: methods based on differential equation models
and stochastic models. In addition, we will indicate some alternative methods that
have emerged in response to the difficulties encountered in applying the classical
approaches.

1 Introduction

It is now commonly accepted that most interesting properties of an organism
emerge from the interactions between its genes, proteins, metabolites, and
other constituents. This implies that, in order to understand the functioning
of an organism, we need to elucidate the networks of interactions involved
in gene regulation, metabolism, signal transduction, and other cellular and
intercellular processes.

Genetic regulatory networks control the spatiotemporal expression of genes
in an organism, and thus underlie complex processes like cell differentiation
and development in prokaryotic and eukaryotic organisms. Genetic regulatory
networks consist of genes, proteins, metabolites, and other small molecules,
as well as their mutual interactions. Their study has taken a qualitative leap
through the use of modern genomic techniques that allow simultaneous mea-
surement of the expression levels of all genes of an organism. In addition to
experimental tools, mathematical methods supported by computer tools are
indispensable for the analysis of genetic regulatory networks. As most net-
works of interest involve many genes connected through interlocking positive
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and negative feedback loops, an intuitive understanding of their dynamics is
difficult to obtain and may lead to erroneous conclusions. Modeling and sim-
ulation tools allow the behavior of large and complex systems to be predicted
in a systematic way.

A variety of methods for the modeling and simulation of genetic regula-
tory networks have been proposed in the literature [3, 12, 15, 25]. In this
tutorial, the two principal approaches that have been used in the literature
will be briefly reviewed: differential equation models and stochastic models
(section 2 and 3). The networks described by these models are examples of
positive systems [7], in the sense that the state and output variables remain
nonnegative on a time-interval T', if the input variables are positive on 7'. In
fact, the variables in the models represent positive quantities, in particular the
concentrations or numbers of molecules of proteins, mRNA, metabolites, and
other constituents. In section 4, we will discuss the difficulties encountered
in applying the classical approaches and point at alternative approaches that
have emerged.

2 Differential equation models

Being arguably the most widespread formalism to model dynamical systems
in science and engineering, ordinary differential equations (ODEs) have been
widely used to analyze genetic regulatory systems. The ODE formalism mod-
els the concentrations of mRNAs, proteins, and other molecules by time-
dependent variables having non-negative real values. Regulatory interactions
take the form of functional and differential relations between the concentration
variables. More specifically, gene regulation is modeled by nonlinear equations
expressing the rate of production or degradation of a component of the system
as a function of the concentrations of other components. The equations have
the mathematical form

dz; .

o = fil@), 1<i<n, (1)
where ¢ = [z1,...,z,]' > 0 is the vector of concentrations of proteins, mR-
NAs, or small molecules, and f; : R™ — R a usually nonlinear function.

The rate of synthesis of ¢ is seen to be dependent upon the concentrations x,
possibly including z;.

Figure 1 shows a simple example of a genetic regulatory network. Genes a
and b, transcribed from separate promoters, encode proteins A and B, each of
which independently controls the expression of both genes. More specifically,
proteins A and B repress gene a as well as gene b at different concentrations.
Repression of the genes is achieved by binding of the proteins to regulatory
sites overlapping with the promoters.

Figure 2(a) shows how the regulatory network in figure 1 can be modeled in
terms of differential equations. The model consists of four variables denoting
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Fig. 1. Example of a simple regulatory network, consisting of the genes a and b,
proteins A and B, and their mutual interactions. The notation follows, in a somewhat
simplified form, the graphical conventions proposed by Kohn [14].

the concentration of mRNA and protein for genes a and b. The transcrip-
tional inhibition of these genes is described by means of sigmoidal functions
h= : R? — [0,1], which is motivated by the usually nonlinear, switch-like
character of gene regulation. The translation of mRNA and the degradation
of mRNA and proteins are assumed to be non-regulated and proportional to
the substrate concentration. Due to the nonlinearity of f;, analytical solution
of the rate equations (1) is not normally possible. In special cases, qualita-
tive properties of the solutions, such as the number and the stability of steady
states and the occurrence of limit cycles, can be established. Most of the time,
however, one has to take recourse to numerical techniques. In figure 2(b) the
results of a numerical simulation of the example network are shown. As can
be seen, the system reaches a steady state in which protein A is present at
a high concentration, whereas protein B is nearly absent. For different initial
conditions, but the same parameter values, a steady state may be reached in
which the concentrations of A and B are reversed

Differential equations of the form (1) do not take into account the spa-
tial dimension of regulatory processes, essential though in multicellular or-
ganisms. The equations can be generalized by defining compartments that
correspond to cells or nuclei, by introducing concentration variables specific
to each compartment, and by allowing diffusion between the compartments
to take place. In the limit of the number of compartments, the resulting equa-
tions can be approximated by partial differential equations (PDEs). Partial
differential equations are even more difficult to solve analytically than ordi-
nary differential equations, and in almost every situation of practical interest
their use requires numerical techniques.

3 Stochastic models

An implicit assumption underlying (1), and differential equations more gen-
erally, is that concentrations of substances vary continuously and determin-
istically. Both of these assumptions may be questionable in the case of gene
regulation, due to the usual small number of molecules of certain components
[13, 16]. Instead of taking a continuous and deterministic approach, some au-
thors have proposed to use discrete and stochastic models of gene regulation.
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Fig. 2. (a) ODE model of the regulatory network in figure 1. The variables zq,
and z,, denote the concentration of protein A and B, the variables z,, and z,, the
concentration of the corresponding mRNA, the parameters Kra, Kpa, Krb, and Kpp
production rates, the parameters Yy, Ypa, Yrb, and 7yp, degradation rates, and the
parameters 9]1,,,, 9]2,a, Gzl,b, and 92,, threshold concentrations. The variables are non-
negative and the parameters positive. (b) Time-concentration plot resulting from a
numerical simulation of the system described in (a), given specified values for the
parameters.

Discrete amounts X of molecules are taken as state variables, and a joint
probability distribution p(X,t) is introduced to express the probability that
at time ¢t the cell contains X; molecules of the first species, X5 molecules of
the second species, etc. The time evolution of the function p(X,t) can then
be specified as follows:

p(Xat+At):p(Xat)(l_iajAt)-FiBjAta (2)

Jj=1 Jj=1

where m is the number of reactions that can occur in the system, a; At the
probability that reaction j will occur in the interval [t,t + At] given that the
system is in the state X at ¢, and Sy At the probability that reaction j will
bring the system in state X from another state in [t, ¢+ At] [8, 9]. Rearranging
(2), and taking the limit as At — 0, gives the master equation [30]:

6 m

P30 = D_(8; — agp(X, 1)). 3)

j=1

Compare this equation with the rate equations (1) above. Whereas the latter
determine how the state of the system changes with time, the former describes
how the probability of the system being in a certain state changes with time.
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Notice that the state variables in the stochastic formulation can be reformu-
lated as concentrations by dividing the number of molecules X; by a volume
factor.

Although the master equation provides an intuitively clear picture of the
stochastic processes governing the dynamics of a regulatory system, it is even
more difficult to solve by analytical means than the deterministic rate equa-
tion. In order to approximate the solution of the master equation, stochastic
simulation methods have been developed [8, 21]. Given a set of possible reac-
tions, the temporal evolution of the state X, the number of molecules of each
species, is predicted. The evolution of the state is determined by stochastic
variables 7 and p, representing the time interval between two successive re-
actions and the type of the next reaction, respectively. At each state a value
for 7 and p is randomly chosen from a set of values whose joint probability
density function p(7,p) has been derived from the same principles as those
underlying the master equation (2).

A+A+— A,

A, + DNA, «— A, - DNA,
RNAP + DNA, «— RNAP.DNA, ¢
RNAP-DNA, — RNAP + DNA,
+ RNA,
B+ B<+— B> s

B2 + DNA, +— B2 - DNA,
By - DNA, + Az «+— Ay - By - DNA,
A, -DNA, + B2 «— Ay - By - DNA,

protein B

concentrations
>

protein A

(2) (b)

Fig. 3. (a) Some of the reactions involved in the expression of gene b in the regu-
latory network of figure 1. The following abbreviations are used: A and B (protein
A and B), A and B> (homodimer of A and B), RNAP (RNA polymerase), DNA,
(promoter region of gene b), and RNA; (mRNA b). (b) A typical time-concentration
plot resulting from stochastic simulation of the reaction system described in (a).

In figure 3(a) a few examples of reactions occurring in the network of fig-
ure 1 are shown: dimerization of the repressor A, binding of the repressor
complex A-A to the promoter region, fixation of DNA polymerase to the pro-
moter in the absence of the repressor complex, transcription of the gene b, etc.
Typical results of a stochastic simulation of the example network are shown
in figure 3(b). Notice the noisy aspect of the time evolution of the protein
and mRNA concentrations. This effect, reflecting the stochastic nature of the
initiation of transcription and the number of protein molecules produced per
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transcript, may have important consequences. More particularly, fluctuations
in the rate of gene expression may lead to phenotypic variation in an isogenic
population [16, 18]. Indeed, starting from the same initial conditions, two dif-
ferent simulations may lead to qualitatively different outcomes. Whereas in
one simulation protein A may be ultimately present at a high concentration
and B at a low concentration like in figure 3(b), another simulation could lead
to the opposite result.

4 Discussion

In summary, differential equation and stochastic models provide detailed de-
scriptions of genetic regulatory networks, down to the molecular level. In
addition, they can be used to make precise, numerical predictions of the be-
havior of regulatory systems. Many excellent examples of the application of
these methods to prokaryote and eukaryote networks can be found in the lit-
erature. McAdams and Shapiro [17] have simulated the choice between lytic
and lysogenic growth in bacteriophage A using nonlinear differential equa-
tions, while Arkin and colleagues have studied the same system by means of a
detailed stochastic model [1]. In a series of publications, the groups of Novak
and Tyson have developed ODE models of the kinetic mechanisms underlying
cell cycle regulation in Xenopus [2] and in yeast [22] (see [29] for a review).
Differential equation models for the segmentation of Drosophila have been
studied, focusing on the formation on the expression patterns of the gap, the
pair-rule, and the segment polarity gene products in the trunk of the embryo
[23, 24, 31].

In many situations of biological interest, however, the application of differ-
ential equation and stochastic models is seriously hampered. In the first place,
the biochemical reaction mechanisms underlying regulatory interactions are
usually not or incompletely known. This means that it is difficult to specify
the rate functions f; in (1) and the reactions j in (3). In the second place,
quantitative information on kinetic parameters and molecular concentrations
is only seldom available, even in the case of well-studied model systems. As
a consequence, the numerical simulation methods mentioned above are often
difficult to apply.

The above two constraints call for methods based on coarse-grained models
that, while abstracting from the precise molecular mechanisms involved, cap-
ture essential aspects of gene regulation. Moreover, these methods should allow
a qualitative analysis of the dynamics of the genetic regulatory systems to be
carried out. A number of such methods have been proposed, such as the qual-
itative analysis of genetic regulatory networks described by piecewise-linear
(PL) differential equations [4, 6, 10, 11, 20, 26], and the analysis of genetic
regulatory networks by means of asynchronous, multivalued logic [19, 27, 28].
Although the methods are based on different formalisms, differential and log-
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ical equations, they share important biological intuitions, in particular the
description of gene activation in terms of on/off-switches.

The above-mentioned methods have been used to study a variety of
prokaryotic and eukaryotic model systems, such as the choice between veg-
etative growth and sporulation in B. subtilis and the genetic control of the
segmentation in the early Drosophila embryo (see [5] for a review). The appli-
cations show that, in order to understand the functioning of an organism in
terms of the interactions in regulatory networks, it is not always necessary to
model the process down to individual biochemical reactions. In fact, when a
global understanding of the evolution of spatiotemporal patterns of gene ex-
pression is sought, coarse-grained and qualitative models might be profitably
employed. However, when a more detailed and quantitative view of the dy-
namics of a regulatory system is required, the qualitative approaches need to
be supplemented by conventional methods of the type discussed in sections 2
and 3.
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