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CélineHernandez,
�

Michel Page,
��� �

Tewfik Sari,
��� �

JohannesGeiselmann
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Abstract

Methodsdeveloped for the qualitative simulationof dynam-
ical systemshave turnedout to be powerful tools for study-
ing geneticregulatorynetworks. We presenta generalization
of asimulationmethodbasedonpiecewise-lineardifferential
equationmodelsthatis ableto dealwith discontinuities.The
methodis soundand hasbeenimplementedin a computer
tool calledGNA.

Intr oduction
Methodsdevelopedfor thequalitativesimulationof dynami-
calsystemshaveturned outto bepowerful toolsfor studying
thenetworksof regulatory interactions betweengenes,pro-
teins,andsmall moleculeswhich underlie the functioning
of living organisms.Theinterestin qualitative methods for
analyzing thesegeneticregulatory networksderivesfrom a
general absenceof quantitative informationon kinetic pa-
rametersandmolecular concentrations. As a consequence,
traditional methods for numerical simulationaredifficult to
apply(see(deJong2002) for a review).

Thequalitative simulationmethoddescribed in (deJong
et al. 2001b) is ableto handlelargeandcomplex networks
of regulatory interactions. The methodis basedon a class
of piecewise-linear(PL) differential equations thathasbeen
well-studiedin mathematical biology (Glass& Kauffman
1973; Mestl,Plahte,& Omholt 1995;Snoussi1989). ThePL
models provide a coarse-graineddescription of genetic reg-
ulatorynetworks,well-adaptedto state-of-the-artmeasure-
ment techniquesin genomics. Moreover, they have math-
ematicalproperties that favour qualitative analysisof the
steady-stateand transientbehavior of regulatory systems.
Thequalitativesimulationmethodhasbeenimplementedin
a publicly-availablecomputer tool, calledGeneticNetwork
Analyzer(GNA) (de Jonget al. 2002). The program has
beenusedto analyzeseveralgeneticregulatory networks of
biological interest,including thenetworkcontrolling theini-
tiationof sporulation in B. subtilis(deJonget al. 2001b).

A short versionof this paperappearsin F. van Harmelen(ed.),
Proceedingsof the 15th EuropeanConferenceon Artificial Intel-
ligence, ECAI2002, IOSPress,Amsterdam,2002.

ThePL modelscontainstepfunctionsdescribingthereg-
ulatory interactions in a network. This introducesdisconti-
nuities in the right-handsideof the differential equations,
which may give rise to nontrivial mathematicalproblems
(Plahte,Mestl, & Omholt 1994). In the above-mentioned
simulationmethod, theseproblemsweretreatedby redefin-
ing the discontinuous, piecewise-linear modelsas a limit
caseof continuous,nonlinearmodels(deJongetal. 2001b).
Unfortunately, theresultingsimulationmethodis notsound,
in the sensethat it is not guaranteedto predict all possible
qualitative behaviors of thesystem(Kuipers 1994). Sound-
nessis critical for many applications,suchasmodel valida-
tion andmodeldiscrimination.

Recentwork on the generalizationof the PL differential
equationstodifferentialinclusionsallowsthediscontinuities
to be dealtwith in a mathematically proper andpractically
useful manner(Gouźe & Sari 2001). Thegeneralization is
basedon anapproachdevelopedby Filippov (1988), which
hasbeenwidely usedin control theory. The major con-
tribution of this paper is to show how the method for the
qualitative simulation of geneticregulatory networks can
be generalizedin the line of Filippov’s work. This gen-
eralization results in a simulation algorithm with the de-
siredsoundnessproperty. Beyond their application in the
context of geneticregulatory networks, the ideasunderly-
ing thegeneralization maybea usefulcomplementto other
methods for the qualitative analysisof dynamical systems
basedon theapproximation of complex nonlinearfunctions
by piecewise-linear functions (Nishida & Doshita 1995;
Sacks1990).

After abrief review of PL modelsof regulatory networks,
we will discusstheFilippov generalization. Thequalitative
simulationmethodbasedon this approachis described, fol-
lowed by its application to a real example, the regulatory
network underlying the initiation of sporulation in B. sub-
tilis. A discussionin thecontext of relatedwork concludes
thepaper.



PL modelsof geneticregulatory networks
The dynamics of genetic regulatory networks canbe mod-
eled by a classof piecewise-linear differential equations
of the following general form (Glass& Kauffman 1973;
Mestl,Plahte,& Omholt1995; Snoussi1989):���������������������������� �"!#� (1)

where���$�&% 
 �('(')'��*%,+-�/. is a vectorof cellularprotein con-
centrations, and �0�1�32 
 �('(')'(�425+�� . , �6� diag�87 
 �(')'(')�/79+�� .
Therateof change of eachconcentration%;: , <>=@?A=@B , is
definedasthe differenceof the rateof synthesis2,:*�3��� and
therateof degradation7 : �3���C% : of theprotein.Thefunction2 :EDGF + HJILK F HJI consistsof a sumof stepfunctionexpres-
sions,eachweightedby a rateparameter, which expresses
thelogic of generegulation (Mestl,Plahte,& Omholt1995;
Snoussi1989). The function 7 :MD�F + HJI K FON I is defined
analogously.

Figure1 gives anexample of a simplegenetic regulatory
network. Genesa andb, transcribedfrom separatepromot-
ers, encode proteinsA andB, eachof which controls the
expressionof bothgenes.1 Morespecifically, proteinsA and
B repress gene a aswell asgeneb at different concentra-
tions.Repressionof thegenes is achieved by binding of the
proteins to regulatorysitesoverlapping with thepromoters.

Thenetwork in figure1 canbedescribedby means of the
following pairof stateequations:P%,QM�SR,Q�TVUW�&%,Q��*X �Q �YT9UO�&%[Z)�*X 
Z �\��]YQ^%,Q (2)P% Z �SR Z T U ��% Q �_X 
Q �-T U �&% Z �_X �Z �\�`] Z % Z ' (3)

Genea is expressedat a rate R#Q$acb , if the concentra-
tion of protein A is below its threshold X �Q and the con-
centration of protein B below its threshold X 
Z , that is, ifT U �&%[QC�*X �Q �YT U ��%,Z)�*X 
Z �d� < . Recall that T U ��%e�_Xf� is a step
function evaluatingto 1, if %hgiX , andto 0, if %hajX . Protein
A is spontaneouslydegradedatarateproportional to its own
concentration( ] Q a"b is a rateconstant).Thestateequation
of geneb is interpretedanalogously.

a b

- - - -

A B

Figure1: Example of a geneticregulatory network of two
genes(a andb), eachcodingfor a regulatory protein(A and
B).

The dynamical properties of PL modelsof the form (1)
canbeanalyzedin the B -dimensionalphasespacebox k �k 
Al '('(' l k + , wherek :^� � %,:Em F H,Ion b = %J: =�prq)s :  ,<t=u?v=wB , and pLq(s : is a parameterdenoting a maximum
concentrationfor theprotein.

In general, a protein encoded by a geneis involved in
different interactions at different threshold concentrations,
whichafterorderingaredenotedby X 
: �(')'('(�_Xyx(z: . The B � < -
dimensional hyperplanes%\:{�|Xf} z: , <t=$~ : =S� : , divide k

1As anotationalconvention, namesof genesareprintedin italic
andnamesof proteinsstartwith a capital.

into regions thatarecalleddomains. More precisely, a do-
main ����k is definedby � � � 
 l '(')' l � + , whereevery� : , <M=i?;=iB , is definedby oneof theequationsbelow:

� : � � % : n b = % : g X 
:  �� :e� � %,: n %J:��"X 
:  �� : � � % : n X 
: gj% : giX �:  �')'(' (4)� :e� � %,: n Xyx z: gi%,: =�pLq(s :  '
If for a domain � , therearesome ? ��� , <i=�?�=�B , < =� ="� : , suchthat � :W� � %J: n %J:��uXy�:  , then � is calleda
switchingdomain. Thecorrespondingvariables %O: arecalled
switching variables. The order of a switchingdomain is a
numberbetween1 and B , equalto thenumberof switching
variables.A domainthatis notaswitchingdomain is called
a regulatory domain. � denotesthesetof domains in k .

In figure 2(a) the two-dimensional phasespacebox k
for the example network is shown. As proteins A and B
eachhavetwo thresholds,thephasespacebox is partitioned
into 9 regulatory and16 switchingdomains. For example,� 
 � � �&% Q �*% Z �Lm F � n b = % Q g�X 
Q �Wb = % Z g|X 
Z  is
a regulatorydomain, whereas� � � � ��%,QC�_%,Z��Mm F � n b =%,Q�giX 
Q �\%,Z;�SX �Z  is a (first-order)switchingdomain.

Whenevaluating the stepfunction expressionsin (1) in
a regulatory domain, 2 : and 7 : reduceto sumsof ratecon-
stants.Moreprecisely, in aregulatorydomain � , 2,: reduces
to some �^�: m@��:�� � 2V:/����� n ! = � =��6� �  , and 7�:
to some �Y�: m���:�� � 79:*�3��� n ! = � =���� �  . Inside� , thestateequationsthussimplify to linearanddecoupled
differentialequations ����S� � �`� � ��� (5)
where � � ��� �#�
 �)'(')'�� �#�+ �*. and � � � diag� �Y�
 �)'('(')� ���+ � .
Sincethestepfunctionsarenotdefined at thethresholds,the
stateequations arenotdefinedin theswitchingdomains.

For every regulatory domain � m � , we define the
function � : � � ��� �#�:¡  ���: . Analysis of (5) shows that
all solution trajectoriesin � monotonically tend towards
a target equilibrium, a stableequilibrium given by �¢�£ � � � , with

£ �¤� � 
 �(')'(')� � +Y�/. (Edwards et al. 2001;
Snoussi1989).In theexample, we have � Q � � bY��R Q  , � Q � � ] Q  for
protein A, and � Z � � b-��R Z  , � Z � � ] Z  for proteinB.
In regulatory domain � 
 in figure2(a),thetrajectoriestend
towards the target equilibrium

£ � � 
 �¥�¦��R Q   ] Q �4R Z   ] Z � .
Differentregulatory domains generally havedifferenttarget
equilibria. For instance,in regulatory domain� � , thetarget
equilibrium is given by ��b-��R^Z   ]YZ_� .

The global solution of (1) could be obtainedby piec-
ing together the local solutions in regulatory domains, in
sucha way as to guaranteecontinuity of the global solu-
tion acrossthethreshold hyperplanes(Edwardset al. 2001;
Snoussi 1989). This works fine as long as trajectoriesar-
riving ata thresholdhyperplanecanbecontinued in another
regulatorydomain, e.g., trajectoriesarriving at theswitching
domain � � from the regulatory domain � 
 (figure 2(a)).
However, when the trajectories on both sidesof a thresh-
old hyperplaneevolve towards this plane,asin the caseof
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Figure2: (a) Phasespacebox for the example network in figure 1.

£ � � 
 � , £ � � � � , £ � � 	 � denotethe target equilibria of
the regulatory domains � 
 , � � , � 	 , andareassumedto lie in the upperright, upperleft, andlowerleft regulatory domains,
respectively. In addition, thefigureshows thediscontinuitiesat theswitchingdomains � � and � � . (b)-(c) Determination of
thetargetequilibrium setsÑ � � � � and Ñ � � � � .
trajectoriesarriving from � � and � 	 at � � , mathematical
perplexities arise. There is no indicationon how the local
solutionsin � � and � 	 canbecontinued.

Analysisof discontinuities in PL models
Thetroublesat thethresholdhyperplanesarecausedby dis-
continuities in the right-handsideof (1), dueto the useof
stepfunctions.In ordertodealwith thesediscontinuities,we
will usea method originally proposedby Filippov (1988).
This method, recentlyappliedby Gouźe andSari (2001) to
PL systemsof the form (1), consistsof extending a system
of differentialequationswith discontinuousright-handsides
into a systemof differentialinclusions.

Let � be a switchingdomain of order ~ . Let Ò be the
hyperplaneof dimensionB � ~ containing � . Theboundary
of � in Ò is theset Ó � � � of all points � m Ò , suchthateach
ball ÓGÔ �����/Õ9� in Ò of center� andradius Õha0b intersects
both � and ÒwÖG� (Kelley 1969). In the casethat � is a
regulatorydomain, Ò equalsk .

Now, for every � m � we definethesets× � � �;� � � . m � n � . �iÓ � � �  � andØ � � ��� � � . m � n � . regulatory domain, ���iÓ � � . �  '× � � � contains thedomains in theboundaryof � , whereasØ � � � contains the regulatorydomains thathave � in their
boundary.

In the caseof the regulatory domain � 
 in figure 2(a),
we find

× � � 
 �>� � � � � �>Ù � �>Ú5 , while
× � � � �L� � �tÚ5 .

Furthermore,
Ø � � 
 ��� �  and

Ø � � � �O� � � 
 � � �  .
The basicideaof the Filippov approachis to extendthe

differentialequations(1) into differential inclusions��imÜÛ|������� (6)

whereÛ D k KÞÝ � k � is a set-valuedfunction.2

For �jm � , and � a regulatorydomain, we define Ûu�3���
simplyas Û$�����;� � � � ��� � �  ' (7)

2For a set ß , à�á&ßAâ representsthepower setof ß .

Notice that, sincethe set Ûu�3��� contains a singleelement,
theextensionof thePL systemagrees with theoriginal sys-
temin theregulatory domains. If � is a switchingdomain,Ûu�3��� is definedby

Û$������� ã�ä�� � � �;å �`� ��å � n � . m Ø � � �  ��' (8)

Thesmallestclosedconvex set ã�ä��3æ�� of a set æ is the in-
tersectionof all closedconvex setscontaining æ (Filippov
1988). In the caseof switching domains, Û|����� will not
generallybesingle-valued.

Let ç �è�*'(')'(�*X�} z: �)'('('º�/. , é �è�*'(')'(��RJ:Íê/�(')'('º�/. , and ë ��8] 
 �(')'(')�/]�+Y�/. benumerical parametervalues.Furthermore,
let ����bf�`�¢� I m k represent the initial conditions. An
absolutely continuousfunction ���&ì*����íe�&ì���bY��� I � ç � é � ë � is
a solutionof (6) in thesenseof Filippov on î b-�*ï î , ï¥a6b , if�W�3bf���@� I andfor almostall ìAm î bY�*ï î it holds that

��W��ì*�vmÛu�3���&ì*�*� (Filippov 1988). Thequalification ‘for almostallì>m î bY�_ï î ’ meansthat the setof time-points for which the
condition doesnotholdis of measure0. For all initial values� I m k thereexistsasolutionof (6) on î bY�*ï î . However, this
solutionis notguaranteedto beunique.

For every domain � , a so-calledtarget equilibrium setÑ � � � canbedefined. If � is a regulatory domain, then

Ñ � � ��� � £ � � �  ' (9)

If � is a switchingdomain, thedefinitionis a little bit more
complicated.Let � bea switchingdomainof order ~ , con-
tainedin the B � ~ -dimensionalhyperplaneÒ . Then

Ñ � � ��� Ò"ð ã(äW� � £ � � . � n � . m Ø � � �  ��' (10)

That is, Ñ � � � is the smallestclosedconvex setof the tar-
get equilibria of regulatory domains � . having � in their
boundary, intersectedwith thehyperplanecontaining � .

A solutionmayinstantaneouslycrossaswitchingdomain
or remains in it for sometime ïñaòb , sliding along the
threshold hyperplane containing the domain. Gouźe and
Sari(2001) haveshown thatthelatterslidingmodesolutions
exist in a switchingdomain � , if f Ñ � � ��ó� �  . Thesliding
mode solutions monotonically tendstowards Ñ � � � (Gouzé
& Sari 2001). BecauseÑ � � � doesnot generally includea



singlepoint, thebehavior of thesystemis not uniquely de-
terminedô by thedifferentialinclusion(6).

Considertheexamplesin figure2(b)-(c). Thetargetequi-
librium set Ñ � � � � of the switchingdomain � � is defined,
following (10), by theintersectionof ã�ä�� � £ � � 
 ��� £ � � � �  �
and the threshold hyperplane %�Z�� X 
Z . The smallest
closedconvex setconsistsof the linearsegmentconnecting
the points �3R Q   ] Q ��R Z   ] Z � and ��b-��R Z   ] Z � . Ñ � � � � andthe
threshold plane %eZ��1X 
Z do not intersectin the figure, soÑ � � � ��� �  andall solutions instantaneously cross� � .

This is different in the case of � � . Here, the tar-
get equilibrium set Ñ � � � � is given by the intersectionofã�ä�� � £ � � � ��� £ � � 	 �  � , the linear segment connecting the
points ��bY�4R Z   ] Z � and ��b-�_b�� , and the thresholdhyperplane%,ZG�0X �Z . Consequently, Ñ � � � � equals

� ��b-�*X �Z �  , andthere
exists a (unique) sliding modesolution in � � , tending to-
wards �3bY�_X �Z � . Becausethetargetequilibrium lies inside � � ,
it is alsoasteadystateof thesystem.Closeranalysisreveals
that the equilibrium ��b-�*X �Z � is stable. Notice the intuitive
validity of the Filippov approach: solutionsarriving at � �
from � � or � 	 slidealongthe threshold planetowardsthe
equilibrium.

Method for qualitati vesimulation
Qualitati ve constraints on parameters
Most of thetime,precisenumerical valuesfor thethreshold
andrateparametersin (1) will not beavailable.Instead, we
will specifyqualitative constraintson theparametervalues,
asexplained in (de Jonget al. 2001b). Theseconstraints,
having theform of algebraic inequalities,canusuallybein-
ferredfrom biological data.

Thefirst constraintis obtainedby ordering the � : thresh-
old concentrationsof gene? , yieldingthethresholdinequal-
ities. In thecaseof proteinA, therearetwo thresholdcon-
centrations: X 
Q and X �Q . Assumingthefirst to belower than
the second, we obtainthe thresholdinequalities b�g|X 
Q gX �Q g prq)s Q . The ordering of the thresholds of proteinB
giveriseto brgjX 
Z gjX �Z g pLq(s Z .

Second, the possibletarget equilibrium levels �W�:   ���:
of % : in different regulatory domains � m � can be or-
deredwith respectto the threshold concentrations. There-
sulting equilibrium inequalities for %\Q in the example areX �Q g�R Q   ] Q g pLq(s Q . In the absenceof proteinB, while
proteinA hasnot yet reached its highestlevel, genea is ex-
pressedat a rate R Q . Thecorresponding target equilibrium
value R[Q   ]�Q of %[Q mustbeabove the secondthresholdX �Q ,
otherwisetheconcentrationof theproteinwouldnotbeable
to reachor maintaina level at which theobservednegative
autoregulationof gene a occurs. In a similar way, we setX �Z g"RJZ   ]YZ�g prq)s Z for %õZ .

A quantitative PL modelof a geneticregulatory network
consistsof stateequations(1) andnumerical parameterval-
ues ç � é � ë . In a qualitative PL model, on the otherhand,
thestateequations aresupplementedby thresholdandequi-
librium inequalities. Every quantitative PL model can be
abstractedinto auniquequalitativePL model, while aquali-
tativePL modelcorrespondsto asetof quantitativePL mod-
els.

Qualitati ve statesand behaviors
An intuitive qualitative description of the stateof a regu-
latory systemconsistsof the domainin which the system
resides,supplementedby the positionwith respectto this
domainof thetargetequilibrium setto whichthestateof the
systemtends. A qualitative behavior is thengiven by the
sequenceof qualitativestatestraversedby thesystem.

We first definea function ö D � l k K � � < �_bY� <V + that
mapsadomain� andapoint ÷ to asignvector ø describing
the relative positionof � and ÷ . If % : is a non-switching
variable,then

ù : � úû ü < � if ý : �"þ_ÿ�� � : ,b � if �����J� : g ý : gjþ_ÿ�� � : ,� < � if ý : =������J� : .
On theotherhand,if % : is a switchingvariable,then � : �� Xy�:  , and

ù :��
ú�û �ü < � if ý :�a Xy�: ,b � if ý : �"Xy�: ,� < � if ý : g Xy�: .

Generalizing thedefinition,we obtainthesetfunction 	 D� l Ý � k � KÞÝ � � � < �_bY� <V + � thatmapsadomain � andasetæ to asetof signvectors: 	 � � �_æ���� � ö � � � ÷ � n ÷ m�æ  .
Let �W��ì*�;��íõ��ì��_b-�_� I � ç � é � ë � bethesolutionof aquanti-

tativePLmodeldescribingaregulatorynetwork onthetime-
interval î b-�*ï î . Now supposethatfor someì , b = ì{g"ï , we
have ���&ì*�>m � , � m � . Thepoint ���&ì*� correspondsto a
qualitative stateof thesystemdefined by
�� �����*ì*���� � � 	 � � � Ñ � � �*����'

Thesolution ���&ì*� on î b-�*ï î passesthrougha sequenceof
domains � I �(')'('(� ��� . Thecorrespondingsequenceof qual-
itativestatesis calledthequalitative behavior of thesystem
on thetime-interval. More specifically, a qualitative behav-
ior of thesystemis definedby

��� á�����������â �"á�!�"$#%��&Má�"$#'��(Wá�"$#�ââ�)��+*+*,*+�-!�"$./��&Má�"$./��(Wá�"$.{ââ�)â
Considerthe solution trajectoryin figure 3(a), obtained

for given exactparameter values,which movesfrom anini-
tial statein � 
 towardsa stableequilibrium in � � . Follow-
ing theabovedefinitions,thesolutioncanbeabstractedinto
the qualitative behavior


10 �¤� 
�� 
 � 
�� � � 
�� � � 
�� � � ,
where


�� 
 �2 � 
 � � � < � < �  � , 
�� � �2 � � � �  � , 
�� � � � � � � �3bY� < �  � , and

3� � �4 � � � � �3bY�_b��  � . For regulatory

domain � 
 , we have Ñ � � 
 �v� � �3R Q   ] Q ��R Z   ] Z �  . For the
parametervaluesin figure3, we find R Q   ] Q a�X �Q a�X 
Q andRJZ   ]YZÜa�X �Z añX 
Z . As a consequence, 	 � � 
 � Ñ � � 
 �_�t�� � < � < �  , andhence


�� 
 �5 � 
 � � � < � < �  � . In the caseof
the switching domain � � , the smallestclosedconvex set
of the target equilibria in � 
 and � � consistsof the lin-
earsegmentconnecting ��R^Q   ]YQf��R,Z   ]�Z_� and ��bY�4R[Z   ]�Z�� . For
the parametervaluesin figure 3, this segmentdoesnot in-
tersectwith % Z � X 
Z , so that 	 � � � � Ñ � � � �_� � �  and
3� � �6 � � � �  � . The otherqualitative statesarederived
analogously.
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Figure3: (a)Solutiontrajectoryof thePL model (2)-(3),ob-
tainedfor given numericalvaluesfor theparametersandini-
tial conditions.(b) Transitiongraph resultingfromasimula-
tion of theexample systemstartingin thedomain� 
 . Qual-
itativestatesassociatedwith regulatorydomainsandswitch-
ing domainsareindicatedby unfilledandfilled dots,respec-
tively. Qualitativestatesassociatedwith domainscontaining
anequilibrium pointarecircled(deJonget al. 2001a).

Theexample shows how a numerical solutionof thesys-
temcanbeabstractedinto a qualitative behavior consisting
of a sequence of qualitative states. More generally, every
solution � of a quantitative PL model on a time-intervalî bY�*ï î can be abstractedinto a unique qualitative behavior
10 �3���_bY�_ï-� .
Simulation algorithm
Given a qualitative PL model andqualitative initial condi-
tions consisting of a regulatory domain � I , one can ask
what are the possiblequalitative behaviors of the system.
Determining thesequalitative behaviors is theaim of qual-
itative simulation. Phrasedin a different way, denoting byE

the setof solutions ����ì*� on sometime-interval î b-�*ï î of
all quantitative PL modelscorresponding to the qualitative
model, suchthat ���3bf�r��� I m � I , the aim of qualitative
simulationis to find thesetof qualitative behaviors thatab-
stractfrom some� m E .

Thesimulationalgorithm generatesasetof qualitativebe-
haviorsby recursivelydetermining transitionsbetweenqual-
itative states,startingfrom the qualitative stateassociated
with the initial domain � I (deJonget al. 2001a). In order
to achieve this, two issuesneedto beaddressed.First of all,
how canwe determine the qualitative stateassociatedwith
a domainfrom the constraints on the parameters? Second,
how canwefind thepossibletransitionsfromthisqualitative
state?

In order to determine thequalitativestateassociatedwith
adomain � , weneedtoderive 	 � � � Ñ � � �*� fromthethresh-
old andequilibrium inequalities. This is achievedby com-
puting 	 � � �-F � � �_� , where F � � � � k is a hyperrectan-
gular, closedconvex set that is sureto include Ñ � � � , but
thatmaybeanoverapproximationof the latter. Thedetails
of theprocedure,which consistsof a rather straightforward
comparisonof the upper andlowerbounds of � andeither
the target equilibrium

£ � � � or the target equilibria
£ � � .¾� ,� .dm Ø � � � , depending on whether � is a regulatory or

switchingdomain, aregiven in (deJonget al. 2001a).
The possibletransitions are definedby two transition

rules. The relative position of the domains � and � . is
given by 	 � � � � .Ê� . As canbe easily verified, 	 � � � � .8�
alwaysconsistsof a singlesignvector, that is, 	 � � � � .¾����'G  . Thedomains � and � . areassociatedwith qualitative
states


3�
and


3� . , calculatedto be  � � 	 � � �+F � � �*��� and � .3� 	 � � .��+F � � .¾�*��� , respectively.

Rule 1 Let � .{m × � � � . There is a transitionfrom

3�

to
3� . , if (1) 	 � � �-F � � �_� ó� �  , and(2) if % : is a switch-
ing variable in � . , but not in � , then thereis some H m	 � � �-F � � �_� , suchthat ö :JI�:^� < .
Rule 2 Let � m × � � .8� . There is a transitionfrom


��
to


�� . , if (1) 	 � � .��-F � � .¾�*� ó� �  , and (2) if %#: is a
switchingvariable in � , but not in � . , thenthereis someH .õm 	 � � .��-F � � .¾�*� , suchthat ö .: I : ó�0� < .

Intuitively, the first transitionrule saysthat, in order to
entera switchingdomain � . in the boundaryof � , some
trajectories must tendtowards � . (condition (2)). If � is
a switchingdomain, thentheremustexist sliding modetra-
jectories in � (condition (1)). The secondtransitionrule
saysthat, in order to entera domain � . from a switching
domain � in theboundaryof � . , thetrajectoriesin � . must
not tendtowards � (condition (2)). If � . is a switchingdo-
main, thentheremustexist sliding modetrajectoriesin � .
(condition (1)).

Givenaninitial domain � I , describing theinitial protein
concentrations � I , the simulationalgorithm computes the
initial qualitative state


�� I
, andthendeterminesall possi-

ble transitions from K Ý I to successorqualitative statesby
means of the rulesabove (deJonget al. 2001a). Thegen-
erationof successorstatesis repeated in a recursivemanner.
Thisresultsin adirectedgraph of qualitativestatesandtran-
sitions,thestatetransitiongraph, which contains all quali-
tative statesreachable from theinitial qualitative state.The
simulationalgorithmhasbeenimplementedin anew version
of theprogramGNA (deJongetal. 2002)(figure 4).

Figure 3(b) shows the transitiongraphfor a qualitative
simulationof the example system,starting in the regula-
tory domain � 
 . Considerthe possibletransitions from
thequalitative state


�� �
associatedwith regulatory domain� � to qualitative statesassociatedwith the boundary do-

mains
× � � � �>� � � � � � � � �>Ú � ��L � �NM5 . We have to ver-

ify whetherthe conditions (1) and (2) of rule 1 are veri-
fied. 	 � � � �-F � � � �*� is calculatedto be

� �3bY� < �  , by means
of theprocedurein (deJongetal. 2001a),while 	 � � � � � � �
equals

� ��bY� < �  . With %õZ a switchingvariable in � � , but not
in � � , we find that (1) and(2) aresatisfied.Consequently,
thereexistsa transitionfrom


�� �
to

�� �

. Transitionsfrom
3� �
to the othercandidatesuccessorstatesare ruled out,

becausethey violatecondition (2).

Soundness
Given a qualitative PL modelandan initial regulatory do-
main � I , whatcanbesaidabout thecorrectnessof thebe-
haviorsproducedbyqualitativesimulation? Wedemandthat
for every �Sm E , thetransitiongraphcontainsa qualitative
behavior


10
, suchthat


O0 � 
10 ������bY�_ï-� (soundness).



Figure4: Screencapture of the qualitative simulatorGNA. The leftmost window shows the genesand interactionsof the
example network in figure 1, themiddle window thestatetransitiongraph resultingfrom simulationof thenetwork, andthe
rightmostwindow thetemporal sequenceof qualitativestatesin oneselectedpathin thestatetransitiongraph.

Theorem1 Thequalitativesimulationalgorithmis sound.
Proof sketch Let � bea solutionin

E
. On î bY�*ï î , ���&ì*� tra-

versesasequenceof domains � I �(')'('(� ��� , where� I m � I .
Like in theproof of thesoundnessof QSIM (Kuipers1994),
it canbe shown by induction that the qualitative behavior
10 �3���_bY�_ï-� is generatedby thealgorithm. Theproof in (de
Jonget al. 2001a)restson two propertiesof thesimulation
algorithm. First of all, the set F � � � usedin the previous
sectionis sureto include Ñ � � � . Second, thetransitionrules
cover all solutions leaving a domain � andenteringa do-
main � . , � .õm × � � � or � m × � � .¾� . P

Application
The useof GNA will be illustratedby modeling andsim-
ulating the regulatory network underlying the initiation of
sporulation in B. subtilis. While nutrients are plentiful,
B. subtilis divides as fast as possible in order to effi-
ciently compete with its neighbors. However, when con-
ditionsbecomeunfavorable,thebacterium protectsitself by
forming environmentally-resistantspores(Grossman1995;
Hoch1993; Stragier& Losick1996). A graphical represen-
tation of the network, following the conventionsproposed
by Kohn(2001), is shown in figure5.

On thebasisof theextensive literatureonB. subtilis, and
information contained in the databaseSubtiList (Moszer,
Glaser, & Danchin1995), a model of the regulatory net-
work controlling theinitiation of sporulation hasbeencon-
structed.Themodel of thenetwork comprises9 statevari-
ablesand 2 input variables. The stateequations are sup-
plemented by 32 threshold inequalitiesand34 equilibrium
inequalities.

The network is centeredaround a phosphorylation path-
way, theso-calledphosphorelay, which integratesa variety
of environmental, cell-cycle, and metabolic signals. Un-
der conditions appropriatefor sporulation, the phosphore-
lay transfersa phosphateto the Spo0A regulator via a se-
quence of phosphorylation stepsmodulatedby kinaseand

phosphataseproteins.Thephosphorelay hasbeensimplified
in thispaperby ignoring intermediatestepsin thetransferof
phosphateto Spo0A.

When input signals in favor of sporulation arrive, the
concentrationof Spo0AQ P reachesa threshold valueabove
whichit activatesvariousgenesthatcommitthebacteriumto
sporulation.In order to produceacritical level of Spo0AQ P,
signalsarrivingatthephosphorelayneedto beamplifiedand
stabilized.This is achieved by anumberof positiveandneg-
ativefeedback loopscontrolling theactivity of thephospho-
relaythrough transcriptional regulationof its components.

GNA hasbeenusedto simulatethe network underlying
theinitiation of sporulation from initial conditionsreflecting
a perturbationof thevegetativegrowth conditions. Theper-
turbationconsistsin anexternal signalindicatinga stateof
nutritional deprivation, whichcausesKinA to autophospho-
rylate.

Simulation of the network takesa few seconds to com-
pleteonanaveragePC,andgivesriseto atransitiongraph of
465states.Eliminating thestatescorresponding to switch-
ing domainswithout sliding modesolutions, which areof
limited interestfrom a biological point of view, yieldsa re-
ducedtransitiongraphof 82states.All qualitativebehaviors
endup in a singlequalitative equilibrium state,associated
with a regulatory domaincontaining a stableequilibrium of
thesystem.

Thequalitativeequilibrium statecorrespondsto thespoU
phenotype, becausetheconcentrationof RTS , a transcription
factorencodedby thespoIIAoperon thatis essentialfor the
development of theforespore(Stragier& Losick1996), has
not reached the thresholdabove which it directsthe tran-
scriptionof its target genes. Whereasin somequalitative
behaviors the systemdirectly reaches the qualitative equi-
librium state,in othersit first passesthrough a period of
transient sigFexpression,whichcanbeinterpretedascorre-
spondingto thespoU phenotype.We conclude thatthetran-
sitiongraphfaithfully represents thetwo possibleresponses
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Figure5: Key genes,proteins,andregulatory interactionsmaking upthenetwork involvedin B.subtilissporulation. In orderto
improvethelegibility of thefigure,thecontrolof transcription by thesigmafactors R\[ and R ] hasbeenrepresentedimplicitly,
by annotatingthepromoterwith thesigmafactorin question.

to nutrient depletion thatareopen to thecell: eitherit con-
tinuesvegetativegrowth or it enterssporulation.

Discussion
We have presenteda method for the qualitative simula-
tion of geneticregulatory networks describedby a classof
piecewise-linear (PL) differentialequations. Themethodis
an extension of (de Jonget al. 2001b), which allows one
to dealwith discontinuities in theright-handsideof thedif-
ferentialequations,occasionedby theuseof stepfunctions.
Thequalitative simulationmethodis supportedby thecom-
puter tool GNA, which hasbeenusedto analyze the net-
work underlying the initiation of sporulation in B. subtilis,
describedin (deJongetal. 2002).

Severalwaysto dealwith thestepfunctiondiscontinuities
in (1)havebeenproposedin theliterature,suchasrestricting
theanalysisto aneasy-to-handle subclassof PL models(Ed-
wardset al. 2001) or relaxingthediscontinuousPL models
to continuous nonlinear models(Mestl, Plahte,& Omholt
1995; Nishida & Doshita1987). The approach presented
herehastheadvantageof putting norestrictionsontheclass
of geneticregulatory networks that canbe handled, while
explicitly definingthebehavior of thesystemin thethresh-
old planesby means of simple-to-analyzePL models. On a
formal level, thegeneralizedlogical method of Thomasand
colleagues(Thomas,Thieffry, & Kaufman1995) is related
to themethodpresentedhere.For asubclassof thePL mod-
els (1), the logical method can identify equilibrium points
in thethreshold hyperplanes(Snoussi& Thomas 1993), but
a general way to dealwith the discontinuities is currently
missing.

PL models of the form (1) can be interpretedas repre-
sentinga classof hybrid systems(Ghosh& Tomlin 2001;

Alur et al. 2001), consistingof modesin which thesystem
evolvesin acontinuouswayanddiscretetransitionsbetween
themodescontrolledby aswitchinglogic. GhoshandTom-
lin givea hybrid-systemformalization of geneticregulatory
networks describedby (1), but do not dealwith thediscon-
tinuity problems discussedin this paper. In order to handle
discontinuities entailedby mode transitions,hybrid-system
simulationmethods basedon Filippov solutionshave been
developed(Mosterman, Zhao, & Biswas1999). Thesemeth-
odsaresuitablefor (semi-)quantitative, but not for qualita-
tivePL models.

Thequalitativesimulationmethoddiscussedin this paper
applies to PL modelsof the form (1), which are applica-
ble in a rangeof domains. In additionto geneticnetworks,
they have beenusedfor modeling food webs,neuralnet-
works, andbiological computers. However, the ideasun-
derlying thegeneralizationof themethod seemmorewidely
applicable in qualitative reasoning, especiallywhennonlin-
ear functions are approximatedby piecewise-linearfunc-
tions (e.g., (Nishida& Doshita1995; Sacks1990)). This
maygiveriseto discontinuitiesontheboundariesseparating
theregionswherethesystembehaves linearly, asfor thePL
models describedin this paper. The methods for the anal-
ysisof piecewise-linear systemscitedabove arenot ableto
dealwith the problems occasioned by sliding modes (fig-
ure2(a)).Thesameholdsfor generalqualitativesimulation
methods like QSIM (Kuipers 1994). The extensionof the
Filippov approachtootherclassesof piecewise-lineardiffer-
entialequations, or evento nonlineardifferentialequations
in general, leadsto ahostof difficult but interestingresearch
problems.

A simulationstudyusingrandomly-generatedPL models
of genetic regulatory networks,carriedout with a previous



versionof thesimulationmethod, hasshown that largeand
comp^ lex networks canbe handled (de Jong& Page2000).
As would be expected,the generalized method presented
in this paperproducestransitiongraphs that areconsider-
ably larger thanbefore. In additionto qualitative statesas-
sociatedwith regulatory domains, we now alsodistinguish
qualitative statesassociatedwith switchingdomains. How-
ever, qualitative statescorresponding to switchingdomains
without sliding mode solutionscanbe ignored, andhence
eliminatedfrom the transitiongraph. Qualitative simula-
tion of the sporulation network leadsto a transitiongraph
with 465states,only 82 of which areassociatedwith regu-
latory domains or switchingdomainswith sliding modeso-
lutions. Furtherwork should establishwhethertheupscala-
bility property is retainedmoregenerally.

Thesoundnessof thequalitativesimulationmethodguar-
anteesthatnosolutionof aquantitativePL model consistent
with the qualitative PL model is omitted. In fact, to each
suchsolutiontherecorrespondsaqualitativebehavior in the
transitiongraph. Thesoundnessof thesimulationalgorithm
is critical for futureextensionsof themethodtowardsmodel
validation andmodeldiscrimination.
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