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Interpreting the Genome

by François Rechenmann and Christian Gautier®

How can we interpret the billions of bases in the human genome? We can

locate the genes of bacteria using bioinformatics, but for more complex

organisms the error rate is close to 50%. Discovering their function is

another matter altogether.

When the first complete genome of a living organism, the bacterium Haemophilus

influenzae, was sequenced in July 1995, there were mixed reactions from the biological

research community. (1)
   Some welcomed it as a major event which opened up radically

new avenues in the study of life,  while others saw it as at best a purely technological and

economic exploit, which distracted the attention of decision-makers and the public away

from the real concerns of research.  Five years later, now that the genome sequences of

several dozen bacteria and three eukaryotic organisms – the yeast Saccharomyces

cerevisiae, the nematode Caenorhabditis elegans and the fruit-fly Drosophila

melanogaster – have been obtained and published, and a draft version of the human

genome sequence has been announced, there are still the same differences of opinion. (2,3)
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The strategy employed is both systematic and

exploratory, and it is this two-pronged approach

which has prompted the debate. The expression

“post-genome”, misleading in more than one

respect, is often used to mark the end of a period

of blind experimentation  and to welcome the

return to a hypothetico-deductive type of

approach. It gives the impression that since the

beginning of the 1970s, sequences have simply

been collected, without any information about

the function and evolution of living systems

being learnt from them. In fact, the availability of

sequences merely marks the beginning of the

long and difficult job of analysing the data,

frequently interrupted by a return to

experimentation and even to new sequencing.

How should this mass of information be used, to

turn it into biological knowledge? A sequence

has a formal structure and lends itself naturally to

analysis by computer. What roles should

computational analysis of genomic data and

experimental approaches play?

The genomes of several dozen

organisms have been sequenced to

date. Haemophilus influenzae was

the first bacterium (A), and the

nematode Caenorhabditis elegans

(B) was the first multicellular

organism. The fruit-fly Drosophila

melanogas ter  (C) is the most

complex organism whose sequence

has been published.

” A, CNRI; B, Cosmos; C, CNRI
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Sequencing a genome means finding out the sequence of

nucleotides which make up the DNA macromolecule.

Each nucleotide is referred to by the first letter of the

name of its nitrogen base, and the information carried by

the genome is contained in the long text – nearly 4 billion

characters for the human genome – written in an alphabet

of these four letters, A, C, G,  and T. The efficiency of a sequencing project is measured

in kilobases per day, and is determined by the  number of machines used. As these can

only sequence relatively short sections of the DNA molecule at a time, powerful

computers have to be used to put the partially overlapping sub-sequences obtained into

the correct order, to reconstitute the complete

genome sequence. As well as point mutations,

where one base is missing or has been replaced

by a different one, there may be errors in the

order of the sub-sequences. What is more, certain

parts of the DNA molecule are more difficult to

sequence, and obtaining a sequence covering

100% of a genome is particularly expensive. This

is why the part of the human genome which is

now available, or the part which should soon be,

is called a “working draft” It is thought that it

will be at least two years before a complete, high

quality sequence is available.

The Human Genome has almost 4

billion base pairs, spread out over

23 chromosomes. The invention of

the sequencing gel (background)

was the most important advance in

the manual analysis of DNA

sequences. ”J.J.P./ Eurelios

It will take at least
two years to go
from the working
draft of the human
genome to  a
complete, high-
quality sequence.
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Part of the sequences is deposited in databanks which are freely accessible via the

Internet. Three banks – EMBL in Europe (maintained by the European Bioinformatics

Institute (EBI) at Hinxton near Cambridge), GenBank (maintained by the National Center

for Biotechnology Information (NCBI) in the United States), and the DNA Data Bank of

Japan (DDBJ) in Japan share their data, and in practice form a single bank with three

entry points. GenBank’s February 2000 version holds 5.7 million sequences, a total of 5.8

billion nucleotides long, and the size of the bank now doubles every seven months, at a

rate of 15 million new bases per day. It is obviously impossible to put a figure on the very

large number of sequences not held in these banks, for confidentiality reasons related to

the economic interests at stake. The human genome sequence which Craig Venter and his

firm Celera say they have completed is not yet accessible either for the time being, but it

should be soon - publication in the scientific journals is expected at the end of  2000.

Each sequence has attached to it various information called “annotations”. This

naturally includes the source organism, but also, where some of the genes have been

identified experimentally or by computational analysis, a brief description of their

function, as well as bibliographical links. One good thing about these banks is that they

bring together all the publicly available sequences, but they do have several

shortcomings. The quality of the sequences varies, and some of  the data are redundant –

there may be several copies of the same section of the genome of a given organism,

sequenced and deposited by different laboratories. There is little logical structure to the

annotations, so it is difficult to interpret them by computer, and these too are of very

variable quality.  Because of this, a number of specialised databases are growing up
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parallel to these banks. Some bring together sequences

which relate to the same organism, for example

SubtiList and NRSub for the bacterium Bacillus

subtilis, Cyanobase for the bacterium Synechocystis,

TAIR for the plant Arabidopsis thaliana. Others group

together complementary annotations, cutting across

various different sequence databases. This is the case

with FlyBase, for the drosophila, MGD (Mouse Genome Database) for the mouse and

GDB (Genome Data Base) for the human genome. Others concentrate on a particular

class of sequences, but for a group of organisms. The Eukaryotic Promoter Database

(EPD) brings together sequences for promoters* from eukaryotic organisms. Finally,

there are several databases devoted to proteins. SwissProt in Geneva is maintained by the

group led by Amos Bairoch, in collaboration with the EBI, and contains more than 80

000 sequences relating to several hundred different organisms. Access to all these data on

the Web has significantly changed biologists’ research strategies.

Each database addresses different biological questions, and this shapes the way the data

are structured within them. They thus each have a different conceptual plan, so hoping to

organise all the genomic data – the sequences and the various other data which are

attached to them –  within a single database is a lost cause. On the other hand, their

integration does need to be improved; in other words it should be made easier to search

these different bases at the same time, in response to a complex request from a biologist

who has his own method of approaching a problem. This as much a conceptual issue as a

* A promoter is a region

upstream from the coding

region, where the RNA

polymerase – the enzyme

responsible for transcribing

DNA into RNA - binds to

the DNA strand.
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technical one. How can different databases be reconciled,

when their structure is based on different definitions, (all

too often in a way which is not even explicit), especially

definitions of such fundamental concepts as the genes

themselves? Some databases consider the gene to be

limited to those regions of DNA which code for its

product or products (protein or RNA) while for others it includes the various regions

which come into play during transcription (from DNA into RNA) and translation (from

RNA into proteins), that is, a large number of regulatory sequences.

Remember that the term ‘genome’ is not without ambiguity either. Generally, it

refers to the DNA macromolecule contained in the chromosomes, but there is also non-

chromosomal DNA, in the plasmids of bacteria and the organelles (mitochondria or

chloroplasts for example) of eukaryotic organisms. The term also applies to the whole set

of genes of an organism.  To return to sequencing, if we use the classic metaphor in

which the DNA bases are seen as letters, then once the text (the sequence) has been

obtained, the first difficulty is to identify the words (the genes) which make it up. Next

comes the question of the meaning – the function of the genes.

A biologist’s first reflex, when a new sequence is available, is to compare it, together

with its potential translations into protein sequences, with those already held in banks and

databases, looking for similar rather than identical sequences. With the exception of

sequencing errors, any differences represent mutations which have accumulated in the

How can databases
be reconciled when
they are based on
different definitions
of a term as
fundamental as ‘the
gene’?



F. Rechenmann and C. Gautier, “Interpreting the Genome”, La Recherche, n° 332, June 2000, pp. 39-45

7

course of evolution. If there is enough

similarity, the two fragments are considered to

result from divergent evolution from one

ancestral fragment, and they are said to be

homologues. If the fragment includes a gene,

homology suggests that the proteins it codes

for have a similar function, but it does not

prove this, as will be seen later. The search for

similarity has led to a wealth of technical and

methodological developments, both to shorten

the computer run time, when a sequence is

compared to all the sequences that are already

known, and also to take prior knowledge about

evolutionary mechanisms into account when

designing algorithms. There are limits to what

this strategy can achieve. A similarity search may fail simply because no homologous

sequence has yet been identified. When the yeast genome was sequenced, almost half its

genes were completely unknown, and they did not resemble anything found in the banks.

Such genes are known as “orphans”. Besides, relying exclusively on the information in

the databanks means that if this information is incorrect, as is all too often the case, the

errors are propagated, resulting in what some researchers call a “house of cards”. So it is

essential to have access to direct gene identification methods which do not rely on

Database interrogation requires

increasingly complex software

tools (this is GadFly). At

present there is no universal

protocol.
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homology. This research is much easier when the genome in question comes from a

prokaryote (a bacterium) than if it comes from a eukaryote  (any other organism).

A prokaryotic genome is fairly dense – almost the entire sequence corresponds to genes

– and we know the codons (sets of three nucleotides) which mark the beginning and end

of translation of a region which

codes for a protein. But

unfortunately it is not that

simple, as there are certain

ambiguities: for example, the

codons which mark the

beginning of translation also

code for an amino acid. ATG,

the most common start codon,

codes for methionine. So there

is only one possible “necessary

condition” defining where to

look for a coding sequence:

between two codons which

mark the end of translation

(known as STOP codons), in

what is called an Open Reading

Frame (ORF) (Fig. 1).

Figure 1. An open reading frame (ORF)

is the region between two STOP codons.

Within this, a coding sequence (CDS)

begins with a START codon, and is

preceded by a ribosome binding site

(RBS). In eukaryotes, a gene is

interrupted by non-coding sequences

called introns. The exons are the parts

which are translated into proteins.
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Any sequence included in an ORF which begins with a

START codon and which is judged to be long enough (for

example 300 nucleotides for a prokaryote, which

corresponds to a protein of 100 amino acids) is considered

to be a potential coding region. If significant sub-

sequences, particularly a promoter or a ribosome* binding

site, are found upstream from this region, this supports the hypotheses, as does the

existence of similar sequences in the nucleotide and protein bases. Finally, the same

sequence can be “read” in three different ways, grouping the letters in threes, codon by

codon, and each of the two

complementary strands of

DNA can be read, so that in

practice the search for

coding regions must be

carried out on six different

virtual sequences. Together

with Antoine Danchin’s

group at the Institut Pasteur,

the authors have developed

software tools to facilitate

genome analysis, but there

are many others. (fig. 2) (4)

* R i b o s o m e s  are

macromolecules which

allow the translation of

messenger RNA into

protein to take place.

Figure 2. Gene location software often combines

several different methods. The first method,

represented by the arrows, looks for coding

sequences preceded by ribosome binding sites (see

figure 1). The second looks for similar sequences in

the database, represented by blue rectangles. The

third uses a Markov model - a sudden variation in

the black trace indicates a coding region.
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In eukaryotic organisms, the situation is a great deal more complicated, because the

coding regions represent only a small percentage of the total genome sequence (3 to 5 %

in mammals), mostly because a eukaryotic gene is made up of several coding regions

called exons, separated by non-coding regions called introns (fig.1). So the strategy used

for bacteria does not work, and in order to identify the coding sequences we have to turn

to other properties of genes, which are less strictly defined and thus less efficient. Firstly,

the fact that a sequence codes for a protein imposes constraints which make bases more

likely to appear in certain orders than in others. Secondly, the cellular machinery

recognises the boundaries between exons and introns thanks to particular arrangements of

consecutive bases, which the software may learn from known examples. Of the

mathematical tools currently available, Markov models seem to manage these two sorts

of information most efficiently (see inset “Markov models”.) But there are many others.

As none of them is completely satisfactory, it is advisable to combine the results of

several complementary or even rival methods. It is only thanks to this strategy that it is

becoming possible to make a reasonably accurate prediction of a complete gene (ie the

succession of introns and exons) and then to reconstruct the coded protein or proteins, as

well as the various regions involved in transcription and translation.

See following pages for insets

“Markov models” and

“Aligning two sequences.”
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¢ Markov models

The transcription and translation

machinery which produces

proteins from genes is able to

recognise particular sequences,

such as those that mark the boundary between exons and introns. These sequences are not

always the same, but they do share a “family likeness”. They are called consensus

sequences. How can a program recognise whether or not a given sequence is likely to

belong to a family? Most of the software techniques use Markov models.  These are

based on successions of states, linked by transition probabilities. Each state is itself

described in terms of probability. In the case of DNA sequences, a state represents a

position in a sequence. For example, in the first position there will be an A in 85.7% of

cases and a T in 12.5% of cases. This might be followed in 100% of cases by a state 2,

defined by other probabilities of finding certain bases, and so on. Calculating the values

of these probabilities is the aim of the first phase in using a Markov model: the training

phase. A set of sequences known to belong to a given family is entered into the computer

so that it can identify the frequently occurring forms. Next, in the recognition phase, the

model is used to determine the degree of similarity between a given sequence and the

ones in its memory. The probability of a particular sequence corresponding to the model

is the product of the probabilities of occurrence within each state, and the transition

probabilities. It is compared with that obtained for a random sequence of the same length.

Above a certain threshold, it indicates whether the sequence belongs to the family

required, for example an intron-exon boundary.
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¢Aligning two sequences.

The simplest way to compare two sequences is to line them up side by side. If they are

the same length, for example the nucleic acid sequences AGTATC and AGATGC, then

in the simplest case there is only one possible alignment:

A G T A T C

A G A T G C

It is a different matter if insertions or deletions may have occurred, for example:

A G T A T – C or alternatively  A G – T A T C

A G – A T G C A G A T – G C

A basic mark is then given to each pair of bases: 2 if the top letter is the same as the

bottom letter, 0 if they do not correspond, and –1 where a letter corresponds with a gap.

The choice of basic marks is obviously important and stems from biological

considerations.  The basic marks of an alignment are added up to give a score: for the

alignments shown above the scores are 6, 8 and 6 respectively. The second one is thus the

best of the three.

What is the best possible score for an alignment? For two sequences six bases long, there

are already 924 possibilities, and more than two and a half million for sequences 12 bases

long. It is thus impossible in practice to try out all the possibilities.

The principles of the technique used, called dynamic programming, are illustrated in the

diagram overleaf.  The possible alignments for two sequences n bases long are

represented as paths  leading from the initial node (0,0) to the final node (n,n), on a grid

where each column corresponds to a letter of the first sequence and each row corresponds
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to a letter of the second sequence. Starting from the initial

node, the score of the partial optimal alignment

terminating at each node (i,j) is calculated one step at a

time. The optimal alignment is then identified by working

backwards from the final node, and selecting at each step

the direction which leads back to the highest-scoring

previous node, until the initial node is reached.

This algorithm can also be used for sequences of amino

acids, but the calculation is more complicated as there are

twenty different variables, not four as with nucleic acids.

To work out the scores, a 20x20 matrix, called a

substitution matrix, is used, which gives the different

“costs” of  substituting one amino acid for another. The

values of the elements of this matrix represent

biochemical and evolutionary considerations. For

example, the replacement of a hydrophobic amino acid

with another hydrophobic amino acid carries a lower

penalty than its replacement with a hydrophilic amino

acid. It has to be said that this basic algorithm still has a

long run time. For the sake of efficiency, the most

frequently used programs such as BLAST or FASTA, use

heuristics which run even faster but which do not

guarantee to identify an optimal alignment.

An alignment is a path leading from

the node (0,0) to the node (6,6). A

diagonal trace between the node (i-1,

j-1) and the node (i,j) shows that the i

letter (ie from the top row of the

sequences compared) and the j letter

(from the bottom row) are the same.

A horizontal line on the graph

indicates that a letter on the top row

corresponds to a gap in the bottom

row; a vertical line indicates a

correspondence between a gap on the

top row and a letter on the bottom

row. A straight diagonal line across

the grid thus represents an alignment

without insertions. The blue path

corresponds to the second alignment

and the green path to the third one.
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Using these advanced research strategies produces fairly reliable results in

prokaryotic genome analysis, but there is still a long way to go for eukaryotic genomes.

How can we be sure that the computer predictions are correct? Computational data (in

silico or ‘dry lab’) must be compared against biological data (in vitro and in vivo or ‘wet

lab’). For example, when a gene is expressed it is transcribed into RNA before being

translated into proteins. This RNA can be recovered and sequenced. It does not contain

introns, and can be compared to the genome sequences. Jean Thierry-Mieg, who took part

in sequencing the nematode C. elegans, has shown that about 50% of the predictions

were wrong, sometimes significantly so. (5) It also appears that rather than the 18 000

genes originally predicted, there are only in fact 12 000. An error rate of 50% was also

found for one of the very first prokaryotes to be sequenced, Mycoplasma pneumoniae,

even though the process should theoretically be simpler, as we have seen. This last figure

takes into account errors in gene function attribution. (6)

Clearly the difficulties are not over once a gene is discovered. Its function or functions

still have to be discovered. Structural homology suggests functional homology, so the

strategy is based on a database search for genes with a similar sequence. But this method

also has its limits. Once a certain similarity has been

identified, genes which are orthologues must be

distinguished from those which are paralogues. What

does this difference mean in real terms? It is quite

common for some genes to duplicate themselves.

While the original copy of the gene generally retains

Structural homology
does not necessarily
mean functional
homology. We need
to know how the
gene has evolved as
well.
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its original function (this is a true homologue, hence its name of ‘orthologue’), the

duplicate or duplicates (paralogues) may evolve independently and acquire completely

different functions. These two cases can only be distinguished through an evolutionary

analysis, by constructing phylogenetic trees.

The first step is to “align” the

sequences of homologous genes,

that is, to estimate what mutations

have appeared during their

divergent evolution from a

common ancestor. If only two

sequences are available, a

dynamic-programming algorithm

is used (see inset “Aligning two

sequences”). Where large

numbers of sequences are

available, as is the case with

certain genes coding for

ribosomal RNA, higher-speed

heuristics have to be used, but

these are not guaranteed to find an

optimal alignment. After deciding

on an evolutionary model, it is

Figure 3: The analysis of a gene family’s

evolutionary history begins by lining up their

sequences (bottom) . Their phylogenetic tree can

be drawn up after estimating the number of

mutations necessary to change from one gene to

another. (top)
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normally possible to differentiate

between paralogues and orthologues by

estimating the total number of changes

along the branches of the phylogenetic

tree linking each pair of sequences.

However it is impossible to validate the

resulting tree experimentally. At best it

can be checked against prior knowledge

from the field of systematics * (see

figure 3).

Another problem in the quest for gene functions stems from the fact that the merging of

fragments originating from different genes allows totally new functions to emerge. This is

what François Jacob meant by “evolutionary tinkering”. In addition to these problems

linked to the way living systems function, there are others which arise from the fact that

the available sequence databases are incomplete and contain errors. For these reasons, the

results produced by software are no more than hypotheses, which must in turn be

experimentally tested in the laboratory, in particular by observing the effects of the

substitution or deletion of a gene in the organism, or in one related to it. This is why the

priority given to the human genome has sometimes been criticised. Some think it would

be better to begin by sequencing and analysing the mouse genome, which has large

numbers of genes homologous with human genes, and which can be experimented on,

rather than to tackle the human genome straight away, with the risk of accumulating

*Systemat ics  involves studying and

describing the diversity of organisms,

investigating the nature and causes of the

differences and similarities between them,

demonstrating family relationships between

them, and developing a classification system

which reflects these relationships”.

Translated from L. Matile, P. Tassy, D. Goujet,

‘Introduction à la systématique zoologique’ in

Biosystéma No. 1 SFS Editions, Paris, 1987
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hypotheses which cannot be validated in the short term.

Whatever the answer, given the inadequacy of a purely

computational approach, determining the function of genes

(or rather of the proteins they code for) is now a matter for

the experts.  As soon as the drosophila genome had been

sequenced, Craig Venter hosted what he called a “jamboree”

for forty-five of the world’s top specialists in fly genetics, bio-informatics and proteins,

where they spent eleven days comparing their opinions on the raw sequence he had just

obtained in collaboration with more than thirty teams around the world. It was only after

this brain-storming session that an annotated sequence was submitted to the rest of the

scientific community, and published in the journal Science.  Clearly, systematising this

“annotation” process is a considerable challenge for bioinformatics. Once we think we

have identified the sequence of a gene, what is the best way to fit together data and

knowledge of various kinds and various origins, relating to several organisms,  in order to

predict the functions of that gene?

In the “anything goes” strategy, one key element is the way data and information are

structured within computer systems,  whose powerful capabilities allow the researcher to

search and browse, to visualise data from a different perspective, and thus to draw new

inferences. Although it is easy to store basic data such as sequences, the computational

representation of data about functions, for example those which relate to metabolic

pathways, is still a problem for bioinformatics research. A look at the KEGG database

Annotation is still
a matter for the
experts.
45 specialists held
an 11 day meeting
on the drosophila
sequence.
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will confirm this – here, the data are only presented as images, available “at a click”,

certainly, but impossible to process using software.

The function of certain proteins is to interact

with the “regulatory regions”, generally found

upstream from the genes, and to switch those

genes on or off  – in other words to regulate their

expression. Directly or indirectly, the products of

these genes are then  likely to have an effect on

the expression of other genes. This creates

networks of molecular interactions which adapt

protein production to the cell’s needs in a given

context.  A knowledge of these networks is of

great importance,  because it could explain cell

specialisation within a multicellular organism,

and more generally, its development and

morphogenesis.

At present, these interactions are described in the

specialist literature, and less often in databases,

in the form of text, diagrams or graphs. (see fig

4.) But it will only be possible to check how

consistent they are, to compare them against

Figure 4. Genetic control over the

formation of the eye  is based on a

gene cascade.  Toy activates ey

(eyeless) which can, together with

dac (dachshund) activate itself

(the arrows represent activation).

These interactions are still only

represented in the databases to a

very limited extent.
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gene expression data, or to simulate their function, if they exist in an computer-

compatible form. Unfortunately, not enough is known at present about these interaction

networks to allow them to be modelled in detail, for example in the form of systems of

differential equations whose variables would be a function of the concentrations of

different products.  Only basic models are possible. In the simplest form, a network can

be represented as a set of Boolean variables, with a value of 1 or 0 according to whether

the corresponding gene is expressed or not, and a set of transitions between the values of

these variables. Despite its simplicity, a model of this kind, which has more sophisticated

variants, is capable of exploring the dynamics of interaction networks, for example to

predict the existence of feedback circuits or steady states. This allows the analysis and

simulation of well-defined systems such as the network of ten genes involved in flower

formation in the plant A. thaliana. (7)

Other models are currently being developed, with the aim of producing more realistic

behaviour patterns by including graduated information about reactions, of the type “the

more gene A is expressed, the less gene B is expressed”. At the same time, technological

progress in “DNA chips” heralds the availability of vast amounts of gene expression data.

Thanks to these chips, it will be possible to work out the structure of underlying

interaction networks, although this will need the help of methods of analysis which have

not yet been devised. Within the same timescale, there are already ambitious projects

aiming to create models linking the genomic and metabolic levels. (8)
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Far from being an end in itself, the availability of a complete genome sequence opens up

the possibility of a systematic approach to the genes within it.  But progress is still

needed. The human genome sequence is now available, and the mouse genome soon will

be, but making reliable predictions of eukaryotic genes on the basis of those sequences is

a classic example of a problem which is still wide open.

It is the extreme variety of the information available, and way in which it is interrelated,

which causes the problem, rather than its volume. In fact, improvements in the efficiency

of comparative techniques are keeping pace with the availability of sequences of new

organisms. But to reap the benefit of this multiplier effect, whereby new information is

produced on the basis of existing information and the analysis of new data, it is no longer

good enough to record this information only in textual form and in natural language, even

if it is stored in IT format.  This form is an obstacle to wide-ranging, integrated searches

of large numbers of databases, even when powerful search engines are used. The key

issues in bioinformatics research are therefore not only to design new, increasingly

powerful and above all appropriate algorithms or heuristics, but also to provide tools

which will make it easier to model, structure, examine and visualise biological

knowledge.    FR and CG ¢
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Further reading:

• Académie des Sciences, Rapports sur la science et la technique, No. 1

“Développement et applications de la génomique”, Tec et Doc, 1999

• Antoine Danchin, La Barque de Delphes. Ce que révèle le texte des génomes,

Odile Jacob, 1998

• Alain Bernot, L’Analyse des génomes. Cartographie, séquençage, identification

des gènes, Nathan Université, 1966

• Steven Salzberg, David Searls, Simon Kasif, Computational Methods in

Molecular Biology, Elsevier 1998

• Pierre Baldi and Søren Brunak, Bioinformatics. The Machine Learning Approach,

The MIT Press, 1998.
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